
This section introduces the graphical environment developed to 
create, manipulate, script, debug, and visualize my most recent 
artworks. Chronologically, it comes between The Music Crea-
tures and the dance works. It is presented in contrast to the 
predominant tools that digital artists use today.

Chapter 8 — Fluid, an environment for digital art-making

In earlier sections of this document we have described an “authorship stance” to 
the critique and construction of artificial intelligent agents — a stance where 
the ease of construction of the agent is critical, a stance where the ability to con-
ceptualize the creation of an artwork, while creating it, inside the agent frame-
work, is vital. It is not enough to demonstrate the academic place and power of 
learning algorithms, action-selection techniques, and motor-system representa-
tions: these innovations must be framed in a relationship with a creative prac-
tice.

I have indicated that the authorability afforded by agent systems or AI systems 
in general receives little direct attention, but we have proceeded to construct a 
series of technologies that enable the assembly of the kinds of complex struc-
tures that AI agents seem to demand. And yet at the same time as the context-
tree, the Diagram framework, the generic radial-basis channel and the use of 
historical databases of various kinds enrich the vocabulary for expressing agents, 
they in turn make their own complex potentials. In this section the authorship 
perspective on agent systems meets a more sustained critique of the authorship 
perspective afforded by “mapping” and its kin as we construct the toolset used 
for navigating our agent-based practices and the agent toolkit.

 346



Further, in the introduction, page 12, we have set up the concepts surrounding 
the blanket term “mapping” as an opposing model to pitch an agent perspective, 
as both metaphor and implementation, against. I have already noted that this 
term is a pervasive one, but nowhere is its pervasiveness more manifest than in 
the tools that digital artists use.

 1.   A critique of existing environments 

Some of my works, in particular the earlier agents — Music Creatures and Loops 
— exploit and motivate these AI techniques and metaphors, but they remain 
artworks that are created through the writing and testing and tuning of tens of 
thousands of lines of code. Some lines of course are part of the toolkit and they 
have been written and tested before; some of the new lines are refactored to 
become part of the next toolkit. However, a great many of them were specific to 
the particular installation. and the making of the art-work is the making and 
remaking of those lines of code until they are right.

Not many digital artworks are made like this today. Rather there is a burgeon-
ing community forming around a growing set of software tools for making digi-
tal art, in particular interactive digital art without “recourse” to text-level pro-
gramming. And since these tools are well entrenched in the community and 
form the basis of the courses and programs in schools, it is likely that very few 
digital artworks will be made like this tomorrow either.

With few exceptions, these popular graphical environments (they are controver-
sially sometimes referred to as visual programming languages) are based on a 
common small reservoir of ideas: a few visual metaphors, a few structuring con-
cepts. "ey each possess a surprisingly similar flavor and set of capabilities. So 
similar, in fact, that one might suspect that we are suffering from a digital art 
tools monoculture.

 347



My recent works — how long... and 22 — were both created over a long, sus-
tained period, their premieres scheduled two and a half years in advance, each 
given five, week-long workshops spread evenly out over that time, with a rela-
tively stable set of hardware. Further, these works were been made in collabora-
tion with other artists, both visual and in other media, some of whom pro-
grammed while others did not. "is rare time-frame of sustained collaboration 
allowed a long and profitable look at the tools needed to survive these intensive 
workshop scenarios, effectively both allowing and necessitating a move away 
from a technique based completely on writing and testing and tuning those 
thousands of lines of code. Under ideal conditions one might argue that such a 
sincere look at not just “what should be done” but the inseparable “how it should 
be achieved” is part of the responsibility that artists have to their collaborators 
upon agreeing to work together. To construct and own one’s tools as far as pos-
sible, marks nothing less than an openness to the potential of the collaboration. 
"e resulting goal was to to find a different reservoir of ideas that could be 
drawn upon for the creation of a fresh programming environment for the mak-
ing of interactive digital artworks — an environment for which I would be re-
sponsible for. 

"is section will begin with a brief survey of the common principles behind the 
graphical environments. "is will not be a critique of their implementation de-
tails, their stability, their processing power, but rather of what it is they set out 
to do and the affordances they offer to artists who come to them.  

 348



I shall articulate three main weaknesses of these environments, before moving 
onto a more sustained, contrasting description of the graphical environment 
that emerged out of the needs and pressures of authoring the agents for how 
long... and 22 and the end of !e Music Creatures. My discussion will summarily 
ignore the recent interest pure programming environments such as the notable 
Processing, Drawing By Numbers and Alice applications. "e former compro-
mises slightly Java's support for maintainably complex projects in exchange for a 
significant and admirable gain in pedagogical impact, but remains thoroughly 
and deliberately eclipsed by more fully fledged programming environments. 
From a community perspective Processing is extremely vibrant and interesting, 
but as a development platform it is only half-way toward something else. "e 
other text base programming environments aim, in different ways, for even 
greater pedagogical impact and an even greater simplicity constraint.

"e mainstream tools have been criticized before; however my purpose here is a 
little more focused. Nor is this discussion the place for a fruitless competition 
between the agent-based and extant tools. Rather, we are looking for environ-
ments that allow us not just to create complexity but to interact, navigate, man-
age and collaborate around the kind of complexities that the agent-based ap-
proach tends to create. While they may be sold (and even taught) on the basis 
of how rapidly they create potential what I will ask of these tools here is how 
they interact with, navigate and manage the potential of interactive media.

Began by Ben Fry and Casey Reas: 
http://www.processing.org . Its tactical simplicity when 
compared to other Java environments was declared in a 

personal discussion between myself and Reas.

Alice: http://www.alice.org/

Drawing by Numbers is by John Maeda, J. Maeda, Drawing By Numbers, 
MIT Press, 2001.

!e most productive critical dialogue around Max— conducted by a 
number of major figures in computer must — happened a 

considerable time ago (to apparently little effect): It is collected in

P. Desain and H. Honing. Letter to the editor:  the mins of Max. Computer 
Music Journal, 17(2). 1993.

 349



"e  graphical suite with longest pedigree is Max/Msp/Jitter — with Max 
being the name of the core and Msp and Jitter being progressively more recent 
extensions that allow the manipulation of sound and video respectively. More 
than anything else Max is the canonical data-flow programming environment 
for interactive digital art. "e central metaphor is that the flow of data between 
processing modules will be represented as a visual circuit — this is a digital im-
plementation of the wires of an analogue synthesizer. "e computational 
strength of the environment is then measured solely in the number of available 
modules and perhaps the number of data-types that these wires can carry. 

Circuits can be hidden inside custom modules and while a few modules present 
custom views and interface elements onto their inner workings, most, including 
embedded circuits, retain a rather generic appearance — a label and input and 
output terminals. "is itself is not a particularly problematic design decision — 
an attempt perhaps to maintain a rather clean and minimal visual appearance to 
a complex circuit. 

But visual programming is an idea that seems always to be sliced in two, and 
Max partitions the visual and the programming at a very particular place. What 
is visual is precisely that which is not programming and what is programming 
is, I argue, not made especially graphic. "e actual layout, appearance, size and 
visual relationships between these modules are meaningless. "is has the stated 
benefit that users are relatively free to reorganize the visual appearance of the 
circuit to create their own “interface” to the patch. In practice this flexibility is 
greatly curtained by the circuit's metaphorical use of wires which do act to con-
strain layout and worse: the primitive interface possibilities of the completely 
static layout of a circuit. Is any other complex software product content to dis-
play an interface that does not change structurally? Rather, the static panel of 
knobs and switches is again borrowed from the analogue synthesizer. But if one 
argues that Max is neither a interface language nor a programming language, it 

Information about Max/MSP/Jitter can be found at http://www.cycling74.com

Other environments in this tradition:

Meso’s vvvv — 
http://vvvv.meso.net/ 

Infomus Lab’s eyes-web — 
http://www.infomus.dist.unige.it/eywindex.html 

Trokia Ranch Dance Company’s Isadora — 
http://www.troikatronix.com/isadora.html 

Miller Pukette’s pd — 
http://www-crca.ucsd.edu/~msp/software.html 

IRCAM’s j-max — 
http://freesoftware.ircam.fr/ 

 

!ere is one exception to the meaninglessness of the visual 
layout of a Max “patch” or circuit — that the top to bottom, 
left to right ordering of elements breaks ties in deciding the 

execution ordering of modules, but it is generally believed 
that if a patch depends on this subtle execution ordering the 

patch ought to be redesigned.

 350



remains to be seen if there is a better way of slicing the problems presented by 
“visual programming”.

Equally ambiguous but more important is Max’s very assumption that a depic-
tion of the flow of data through modules that process the data is a particularly 
good way of capturing what a program does, that the manipulation of the flow 
of data through modules is a particularly good way to change what a program 
does and that thinking about the flow of data is a good way to think about what 
programs do and should do.

It's hard to find any persuasive science either way on these questions — few care 
about the speed with which artists can assemble their programs and even fewer 
would try to measure the quality of the decision making under such constraints 
— although there are some researchers who measure the behavior of program-
mers in similar environments (the popular LabVIEW environment which is 
targeted at engineers, but has been used for interactive artworks). In any case, 
the literature is utterly inconclusive about the merits of data-flow versus oppo-
site paradigms, most notably “control-flow”, where visual elements elements rep-
resent the looping and gating constructs of imperative programming languages 
rather than the inputs and outputs of procedure calls. "ere are shades of this 
alternative presentation buried inside Macromedia's Director and applications 
that date from its era. It's telling that environments based on this depiction have 
been more popular in two areas: scripting languages and programming peda-
gogy than they have in interactive art per se. "ere seems to be something of 
relevance to the “temporal arts” that the pure data-flow path misses. 

A survey of our incomplete knowledge concerning the efficacy of 
visual programming environments can be found in: A. F. Blackwell, K. 

N. Whitley, J. Good, M. Petre, Cognitive Factors in Programming with 
Diagrams. Artificial Intelligence Review 15: 95-114, 2001.

For a use of LabVIEW in interactive music: T. Marrin-Nakra, Inside the 
Conductors Jacket: Analysis, Intepretation, and Musical Synthesis of Expressive 

Gesture. PhD !esis. MIT, 2000.

Macromedia — http://www.macromedia.com/

For control flow based visual “programming” take, for example,  
Apple’s wrapper around the text based AppleScript — Automator: 

http://www.apple.com/automator. 

!e visual interface for the Alice environment is also control / object 
first: S. Cooper, W. Dann, R. Pausch Teaching Objects-first in Introductory 

Computer Science, Proceedings of SIGCSE 2003.

 351



Data-flow also trumps data-type in these environments. Max's wires can move 
numbers, sound, video around in addition to nested lists of numbers and strings 
— in theory, a circuit can talk about any data “structure” that, say, LISP can. Yet 
at the same time the use and inspection of these non-uniform data-structures 
are utterly un-visual and un-composable. Nowhere is this more apparent than 
the handling of geometric scene data, which necessarily are complex hierarchical 
linked systems. For all of my earlier discussion of the controllability of geometry 
versus the blendablility of video texture, geometry in these applications — with 
its messy, heterogeneous, hierarchical, typed, non-flowing data-structures — is 
less controllable (and, of course much less blendable) than video. Geometry in 
these applications is fixed and solid, a container for texture, it is something that 
is imported and displayed rather than synthesized. "is lack of interest either in 
variable data-structures or variable control-structures is clearly antithetical to 
the needs of my work — much of the technical contributions of this thesis has 
been given over to the task of making complex systems that change structurally 
while running — and I believe that a toolset and a methodology that draws one 
towards such “static” complexity actually draws one away from the potentials of 
interactivity — be this between artist and tool, dancer and stage or audience 
and screen.  

"at Max, and its progeny (including PD, a re-implementation by Max’s main 
original author Miller Pluckett with different license restrictions, operating sys-
tems and, of course, modules; and vvvv, a re-implemention of the same ideas 
with, at the time, a different operating system and a greater emphasis on video), 
should focus on illustrating data-flow rather than control should come as no 
surprise. And we can use this as circumstantial evidence in the absence of any 
applicable visual programming language science. "e Max module is the most 
succinct “visualization” of the mapping metaphor that one could imagine, short 
of our earlier “function” image. As far as it is visually concerned in the language 
of computer science the module is no more than a function call. Indeed if there 

It is perhaps for this reason that PD, the next 
generation of Max-like environments, possess a 

nascent “data-type” system.

 352



is a common computer science reference to data-flow programming environ-
ments it is not “object orientation” as has been claimed but rather a simple side-
effect free functional programing language. Of course, Max cannot extend this 
principle too far, and ultimately compromises its functional “purity” — hidden, 
un-visualized side effects abound.

It need not be this way. Max’s modules nest but never intersect; they are not 
views onto a complex system, but are, rather, the complex system itself. My 
point of departure is a slightly different place, for I require tools for manipulat-
ing the agent-toolkit, offering, that is, windows into systems rather than the 
material of the systems themselves.

In the language of user-interface design, however, this is not a matter subject to 
taste. Rather Max conflates the model (the data, here both the modules and the 
wires) with the view (the way of manipulating the data, here both the box and 
the lines) with the controller (the glue that binds the model to the view). Such a 
conflation is considered unforgivable by many a human user interface pro-
grammer. It couples the model so tightly to the view such that no other view can 
be offered onto the model. "is visual monoculture is our first main criticism of 
Max and can be levied regardless of what one thinks of the power of the con-
tents of its boxes and wires. 

Forthe visual-programming literature does have consensus on one topic — the 
vast number of different visual metaphors available to choose from. "ere are 
hundreds of visual programming languages. Max offers one metaphor, but more 
critically, enforces this single view onto the “program”. Indeed, its view onto the 
program is, as far as it is concerned, the program itself. 

One can extend Max by adding a module type — either through a external, 
compiled textual programming language, or though the nesting mechanism — 

For a detailed definition of the Model-View-
Controller pattern:  F. Buschmann, R. Meunier, 

H. Rohnert, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture, Volume 1: A System 

of Patterns.John Wiley & Sons, 1996.

See, for a range, the two volume review of the 
field up to 1990:  E. P. Glinert, Visual 

Programming Environments: Applications and Issues 
& Paradigms and Systems. IEEE Computer 

Society Press, 1990.

 353



but one cannot add a new way of looking at the “program” that Max has helped 
assemble either from outside or, critically, inside Max. "is lack of self-
reflexivity is the second of our main criticisms.

Of course, the exact same charge can be levied against a textual programming 
language — few source codes are open or reflexive in this sense. Although we'll 
note in passing a recent interest in doing just this — Xml based programming 
languages such as Water, the Inversion of Control Xml configuration files of 
several container systems and of course this less than recent aspect of Lisp, seek 
to blur program and data by programming with a structure designed for data. 
"e goal here is to allow programs to view and remake programs, in much the 
same way as we asked previously if Max should not allow modules to make, 
move and delete modules, even if just for the sake of having dynamic interfaces. 
Some have gone so far as to predict the slow death of “single-text” programming 
languages as they become inherently multi-perspective. If textual programming 
is becoming self-reflective and in an odd way “multi-media” shouldn't there be a 
panoply of domain-specific, multi-media programming environments leading 
the charge?

Water, C.Fry and M. Plusch 
—  http://www.waterlanguage.org/

!is trend comes from plotting a line through the interest in extensible 
syntaxes for example, the Fortress languge — 

http://research.sun.com/projects/plrg/fortress0618.pdf

and G. L. Steele, Jr., Growing a Language, Journal of Higher-Order and 
Symbolic Computation 12(3) 1999. 

And trends towards direct manipulation of abstract syntax trees, 
including James Gosling’s Jackpot project: 

http://today.java.net/jag/page15.html

 354



If Max has its technical roots in the analogue synthesizer and its conceptual 
roots in mapping, few environments can be seen to widen these bases a little. 
Isadora is an interesting environment for the purposes of this thesis because of 
its development in a interactive dance context —  it is the work of the Troika 
Ranch Dance company, artist and engineer Mark Coniglio. Its more accessible 
revisitation of the visual design of Max is noble, but not an issue for this discus-
sion any more than its processing speed or range of modules. 

More interesting are the two concepts that Isadora, depending on your view, 
either adds to Max or pulls out of Max and names: that of the specific recover-
able graph configuration or “scene”, and that of a separate control surface onto a 
circuit or “control panel”. "e “scenes” are the most interesting innovation — 
they offer specific support for a clumsily created control structure implemented 
in a master “graph” in Max that switches between activating various subgraphs. 

An Isadora document can have any number of Scenes, each of which is a collec-
tion of actors (modules) that manipulates one or more streams of digital media. 
Isadora scenes are 

like scenes in a play: each one may have a different set, different lighting, etc. [...]  
Because you can jump almost instantly from one scene to another [...] it is possi-
ble to move from one interactive setup to another as you move through sections 
of a performance. 

In a sense they are environment support for episodic pieces. "e metaphor 
given is one of lighting or stage cues but while this is useful for understanding 
what they are, it is just as useful for discovering what they are not. For in light-
ing and stage cues there are a well-defined set of resources for a scene change to 
act on. "is enables the idea of a transition to be defined as resources — light 
levels, ropes etc — are moved from one state to another. Not so in digital media 
progressing networks. A scene change, as given by Isadora or by Max's limited 
control flow, a necessarily dramatic event — it involves the initialization and 

Isadora — 
http://www.troikatronix.com

Isadora (v1.1, pre-release) 
manual, p. 68 — 

http://www.troikatronix.com 

 355



configuration of one circuit and the termination of processing in another. No 
amount of support, which Isadora has, external to the patch, for fading in or out 
the video output of a circuit really meets the challenge of a live multi-media 
“transition”. A cross-fade of end-products does not allow the outgoing modules 
that control that video output to negotiate their relationship with the modules 
that will soon replace them. Even the simplest L-cut of film-editing — where a 
cut in one medium precedes a cut in another — violates the constraints of this 
clean cross-fade. 

"is technique depends on the superimposability, and we might rather say, tex-
turality, of the predominantly video-like media that flows through those circuits 
during this switch over or “cross-fade”. "is is in contrast to a tool that would 
acknowledge the geometricality of the processing graphs that are being juggled 
by this scene switch.

"e ultimate inadequacy of Isadora's “scene” helps us discover our third main 
criticism with the whole data-flow paradigm, while Max and others may organ-
ize the flow of data around efficiently and somewhat visually, and their control 
structures, while questionable, are clearly serviceable, their relationship with 
time is particularly weak. To my taste, to be able to create and manipulate com-
plex temporal flows is more central and harder problem than the creation of 
complex flows of data. Superiority in the domain of creating complex data-
manipulations are something that visual environments such as Max can battle 
over with programming languages like Java, but the layering and negotiation of 
temporal structures is something that both Java and Max do unquestionably 
poorly. 

"e perception / action / motor system decomposition of an AI agent is as 
much about the layering and negotiation of time than it is about anything else, 
and we have already seen (page 226 and page140) a number of additions to our 

 356



core programming languages that extend their vocabulary in this regard over 
traditional imperative languages. Perhaps these victories for a text-based envi-
ronment can be secured if they are placed in a visual framework that starts by 
depicting the flow of time rather than the flow of data.

 2.   Fluid, an overview

Fluid, while it might compete in the same arena, has to solve a different prob-
lem. While it shares with Max and Isadora the goal of being a working envi-
ronment for artist — the tool that they use live in rehearsal, the schetchpad that 
they use on the plane to the rehearsal and the environment that they develop 
ideas and materials in long before the rehearsal — unlike Max it doesn’t have to 
take responsibility for creating all of the complexity of the piece. Rather, Fluid’s 
job is to make the agent toolkit approachable, improvisatory, extensible and de-
velopable, to cull from its potential pieces of an artwork. "us, it is necessarily 
hybrid, sharing the development space with the environment used to make the 
toolkit itself. "is can be both a feature and a drawback: it is a feature because 
the more conventional textual programming environments have had far more 
development time spent on them than any tool in the arts probably ever will, 
and a drawback because the Fluid system will never have a complete view of the 
development of work.

A summary of some design principles behind Fluid will help locate Fluid and 
define its relationship to both traditional pure “code practice” and the traditional 
use of environments like Max. 

Visible, editable code is a ubiquitous glue in every visual element — thus, 
every visual element on a Fluid sheet contains code be it a simple box, a 
time marker, a graph and this code that inspectable and changeable and, of 
course, executable. This means that while Fluid is most certainly a visual 

 357



programming environment, it is most certainly not a visual programming 
language. The atoms of programming are readily available and editable but 
they are not necessarily graphic. 

Every visualization is “executable” — a Fluid sheet is a place where one 
makes fragments of code that call upon the whole agent toolkit; however, 
it's also a place where the whole agent toolkit can deposit visualizations of 
its state. But, here, the same principles apply — editable code surrounds 
and connects the visualized elements to the sheet and to each other. 

Visual presentation matters (somehow) — the visual arrangement of sheet 
elements is typically interpreted by other sheet elements and is always 
meaningful for some process. Therefore Fluid invests a considerable 
amount of code towards making general-purpose spatial manipulations 
available: multiple groupings of objects are possible, two constraint based 
layout systems are available, code can talk about spatial filtering. But, the 
visual presentation's meaning is open to definition and redefinition —  it 
might be that there is a flow of scripting type from left to right, or it might 
be that child elements above other elements are responsible for the chil-
dren's life-cycles. The visual presentation’s interpretation is not set, but 
there are enough tools for controlling the layout of elements that it can be 
made usefully important.

One visual element may be in a number of  “places” — since visual position 
is meaningful in a variety of ways, visual position is no longer completely 
available to the programmer to act as a “secondary notation” for organizing 
thought and storing memory. To restore some of this flexibility we allow 
and expect objects to be able to exist on a number of sheets simultane-
ously, including sheets that may not be currently loaded. Often multiple 
sheets are stacked in layers showing visualizations of lower layer's contents 
and workings or showing the relationships between sheets.

 358

text editor overlay (Python)time location

time marker

visual code element

figure 134. "e main window for a sheet — visible here are some code elements of various 
kinds, and the text editor and the output panel.



The history of using the tool is in the tool itself — programmers have 
typically surrounded their editors with extra versioning systems that keep 
track of how textual code is changing from day to day. These tools are al-
most always domain-agnostic, handling text files with no knowledge of 
their contents. However, in collaborative art-making the history of the 
collaboration is part of the collaboration, and environments should make 
the history of their use directly part of the environment. We have seen this 
need in our analysis of alphaWolf, page 84, and I have seen it in my own 
work, pages 98, 127 and 209. This necessitates the creation of domain-
specific versioning systems and domain-specific loggings and analyses of 
how the tool is being used.

The environment can refer to itself — Code in Fluid is open to manipula-
tion by code (in Fluid). Following on from the previous principle, the code 
inside each sheet element can talk about, manipulate and script the ap-
pearance of itself and connect to an interface  that allows the manipulation 
of other components in the sheet. Additionally, the format for storing 
Fluid sheets is a both human- and machine-readable xml.

Fluid sheets can be instantiated with or without visual display — A sheet 
can be instantiated without creating any visual component, in the com-
plete absence of the underlying windowing system. This is an apparent 
feature of almost any graphical programming environment, however it is 
harder to maintain in the presence of embedded code that might end up 
manipulating the “appearance” of a non-graphically instantiated sheet ele-
ment. To fully exploit the power of ad hoc visual layouts for all kinds of 
tasks both big and small, we should expect hundreds or thousands of 
sheets to be instantiated during the life cycle of the work. Any hint of the 
underlying windowing system in such a process prevents this use case 
from being either practical or stable. 

 359

figure 135. "e boundary between finished artwork and 
development tool is blurred. "is image is of the 
Diagram visualizer, which can underlay the Fluid 

framework. "e visualizer itself showed along side Loops 
& Loops Score.



The boundary between finished artwork and environment is blurred — 
no clean separation between what is “Fluid”, what is “toolkit”, and what is 
finished artwork has been maintained in my practice. The movement of 
ideas has not always gone from toolkit to environment and the flow of 
control isn't always from environment to the toolkit. Some examples: the 
layout constraint system become the motivation for some of the advanced 
generic radial-basis channel combinations; Fluid can overlay the main 
graphics canvas and track objects on the screen; there is a pose-graph mo-
tor system representation for fluid visual element positioning — one can 
think of Fluid “agents”; parts of Fluid have even been exhibited alongside 
Loops. The visual element structure can quickly become just the visualiza-
tion of a Diagram marker channel and vice versa.

Together, these principles imply a visual programming environment that is a 
radical break from the Max tradition, indeed any art-tool relationship wide-
spread today. 

"is environment was tailored for a specific domain and a specific working 
style: the creation of collaborative interactive artworks through intensive work-
shops, with generous but expensive time in theaters, through improvisation and 
through the condensation of improvisations. It dodges completely several prob-
lems that others confront and, I believe, fail to convincingly solve. Unlike the 
Max / Isadora / vvvv / EyesWeb tradition it does not attempt to be a visual 
programming language — it limits its use of graphical display and make exten-
sive use of editable code. "is places it firmly toward the language tradition 
Processing / Drawing by Numbers / Alice. Yet at the same time, this allows it to 
be in some cases more visual — the visual layout of elements can be made 
meaningful to and visible to the program itself. However, unlike these extant “art 
languages” Fluid sheds any pedagogical claims in favor of offering an environ-
ment that retains the power of “full” programming languages to scale to large, 

 360



multi-hundred thousand line code-bases. Yet it retains and exploits a commonly 
available programming language that, while it is extended, does not break its 
connection to all of the literature for the language or research behind the lan-
guage. 

Without extensive and difficult to control user studies, Fluid can make few 
claims for ease or power of use. "is makes it no worse off than the dominant 
“products” in the marketplace today. which operate without a firm predictive or 
explanatory theory of their use. At the very least Fluid stands as a unique set of 
wholly implemented, and demonstrated hypotheses about what features art-
making environments need to possess to survive long collaborations around 
open-ended and complex systems. 

"e principles above form the backbone of my description of Fluid. 

 361



Code in every box

"e code that is ubiquitous in Fluid is a “dynamic language” called Python, spe-
cifically the python implementation written in Java known as “Jython”. In con-
trast to the main language of the agent toolkit (Java) Jython is an interpreted, 
late-binding language, the semantics of which are extremely malleable, contain-
ing a full and rather usable meta-class programming framework. It has been 
designed with the purpose of being hosted from within a larger system in mind, 
and Jython has been designed to be hosted within a Java runtime. Finally, as a 
language that has a compact and open source implementation, the interpreter is 
not a closed black box, but is rather an ideal site for further introspection and 
augmentation. "e basic strategy is as follows: by using language such as Java 
for the large and intersecting agent toolkit, and a dynamic language such as Py-
thon for the assembly, glue and interface to the toolkit, the strengths of both 
programming languages can be combined.

Because of the modifiable semantics of the language we can build carefully pre-
pared classes and environments — for small amounts of Python code to use — 
and glue visual elements that contain these codes together, giving them purpose 
on the sheet. Obtaining an editor for these pieces of code hidden inside ele-
ments is easy — Fluid presents a typical, and rather complete, code editor that 
happens to support rich text format files and runtime automatic line comple-
tion. Objects in python can be inspected live, and code executed per-line, per-
selection or per-element with a single key-press. Quite a bit of time, especially in 
the early stages of development or testing, is spent purely inside the editor win-
dow executing code and inspecting objects. Useful code is then propagated out-
side the editor into separate visual elements for execution or even just documen-
tation of ideas, examples and tests. At this point we have a system that can sup-
port simple spatial mnemonics — the equivalent of a “Desktop” metaphor for 
small snippets of code. 

!e canonical definition of the Java language is J. Gosling, B. Joy, G. L. Steele Jr., 
G. Bracha, !e Java Language Specification, 3rd edition, Addison-Wesley, 2005.  

for Python, see http://www.python.org

for Jython, see http://www.jython.org

 362



"is is one route into a visually “extended” programming, but to go further, the 
positions of these elements must begin to mean something. "e simplest exam-
ple of this is a Fluid timeline. "is is a commonly used way of configuring a 
sheet and is a good starting place from which to build an improvisation envi-
ronment.

Inside a time-line there is a series of executable elements and one or more time 
markers. Broadly put, a time marker executes elements that it crosses. Of 
course, this means that there is a life-cycle for the executable elements — at some 
point in time they transition from lying dormant to being “executed” each cycle 
(at various times) and then later from executing to being “stopped”. We know 
from the rest of this work that it is important to state the contract between the 
executor and the executee in such life-cycles, the life-cycle for these elements is 
detailed, open and strongly enforced.

Runners and execution

Helping the time-marker is a Runner class, that maintains this contract, actually 
executes the code inside each visual element, and interprets that code's “return 
values” or effects on the codes local environment.  Although time-lines are ubiq-
uitous, especially inside computer music systems (one could think of any se-
quencing package or audio editor in the last 20 years), the presence of executa-
ble code rather than musical notes or sounds inside the elements adds a compli-
cating dimension. 

"e possible state diagram for visual elements executed by a moving line is more 
complex than it first appears. Since the timeline runner executes code by inter-
secting visual elements' bounding boxes with the rectangle formed by the 
sweeping time marker over one execution cycle, we should look at how these 
rectangles can intersect.

 363

start(...) continue(...) stop(...)

jumpForwards(...)

figure 136. "e intersection of a moving time-marker 
and visual elements causes a number of messages to be 

sent to the elements.

Running

Not Running

start(...)stop(...)

continue(...)

jumpBackwards(...)

jumpForwards(...)

figure 137. "e full state and transition diagram for a 
visual element.



"e traveling time-marker can cut across the start or the end of a visual element 
but it might also wholly consume the visual element (effectively starting it and 
stopping it in one cycle); additionally it may do this while moving backwards.  It 
is important to allow the code inside the element to respond to each of these 
events differently if needs be. Many visual elements run only once (on startup), 
some do the same thing at start, continuation and ending, some are “unmissable” 
(the proper execution of subsequent elements depends on this element having 
started) and execute at least their start and end on being jumped over, others are 
not worth starting unless they are going to continue for a while. 

It is the Runner's responsibility to take the text of the code that the visual ele-
ment contains and map it onto this finite state structure. In Fluid this is done by 
executing the entire code box once and looking for the value of a “return vari-
able”, r. By interpreting the value of r — which may be any one of a number of 
Python objects —  the runner interprets what part of this transition diagram 
gets populated. "e following summarizes the return values that have been 
found to have use inside the current Fluid system (over how long..., 22, Imagery 
for Jeux Deux):

nothing, r remains unset after execution. In this case, the visual element 
wants no further execution. This doesn't mean that it never executes, in 
fact it has already been executed once to see what r was going to be. Such 
visual elements, therefore are executed only on “start”, “jumpOverForwards” 
and “jumpOverBackwards”.

r = an-executable (any of a class containing a Python function, method or 
generator, or a Java or Python instance implementing Updateable). In this 
case the visual element has offered up an object that should be evaluated 
or executed for each execution cycle that this visual element is “running”. 
Generators are called only until they no longer return values. In this case, 

 364



nothing additional is executed in the case of “jumpOverForwards” and 
“jumpOverBackwards”.

r = a 3-tuple; r=(start-executable, continue-executable, stop-executable). In 
this case the visual element has offered up something for each of the “start”, 
“running” and “stop” stages of the visual element life-cycle. This case is by 
far the most commonly used case throughout Fluid.

r = a dictionary; r = {start:start-executable, go:continue-executable, stop: stop-
executable, jumpF: jump-executable, jumpB:jump-b-executable}. The com-
pletely, and rather more verbosely, supplied dictionary of things that might 
be executed. Any of these can be omitted without error.

In addition to reading this “return value” the runner ensures that certain vari-
ables are configured before execution (and before the execution of the returned 
components of r in the future). "ese are purely for convenience and readability, 
all the information is available from the Fluid interface with a little indirection.

_t — the normalized position of the time marker through the visual element. 
This can, in the case of start and stop parts of the life-cycle, be greater 
than one or less than zero.

_dt — the normalized instantaneous velocity of the time marker. 

_attributes — the persistent attributes dictionary for the visual element. This 
is a window onto the visual element from the outside world, and a place 
for the visual element to store things that will survive across executions 
and even across application launches. This is also how visual elements 
customize some of their user interface — Python functions that are stored 
in this dictionary become menu items for the visual element, numbers 
become interactive sliders and strings become editable text boxes.

 365

figure 138. "e full state and transition diagram for an 
element on a sheet with two time markers.

start(...)stop(...)

continue(...)

jumpBackwards(...)

jumpForwards(...)

Running Runningnorneither

Running Runningor



Finally, we note that there can be multiple time-markers at work on one sheet 
— we'll see below how this can become increasingly useful in more complex 
sheets. Indeed, there is, in addition to any time-marker on a sheet, another 
Runner, one corresponding to explicit mouse-clicks on the visual elements. 
Fluid elements can be executed by option-clicking on them, which spawns a 
time marker local only to that element for the duration of the mouse move-
ment.

"is means that runners must organize themselves such that the life-cycle tran-
sition diagrams for individual markers can be effectively shared. "is is achieved 
through a context-based parenting mechanism — specifically all the children of 
a runner share the activations of the parent. Although there are a great many 
ways of taking the product of two of these state-diagrams, in practice only one 
based on the logical “or” of whether a diagram is executing has been of use. Spe-
cifically, if any runner claims a visual element as running then it remains or be-
comes running. One could imagine forming “and” and even “exclusive-or” inter-
sections between runners and their time-lines, but so far no project has needed 
them. "is multiple, distributed-access state diagram is supported using the 
deferred dispatch and channel rewriting capabilities of Diagram, page 256.

 

In the case of multiple time markers the _t in the execution 
environment is modified to become an instance which mas-

querades as a number, but contains all the _t information 
from each of the time-markers should the visual element 

require access. At present the scalar version of this is the _t 
corresponding to the most recently created time marker.

 366



A (persistent) plug-in architecture

Clearly, even with our time-line example there is quite a lot going on — we 
should begin to look at how these elements are coupled together, and how the 
sheet assemblage is designed and perhaps even more importantly stored over 
time. We have spent some time analyzing the conditions under which tight 
coupling between systems occurs in the agent framework and building tech-
niques such as the context tree that prevent relationships between apparently 
independent code fusing solid.

Firstly we'd like to be able to reuse visual elements inside different contexts, dif-
ferent sheets, and specifically, according to our design principles above we'd like 
to be able to use them non-visually. "is means that they must communicate 
with the visual presentation system but not couple to it. Fluid makes extensive 
use of two techniques —  a tree delegation system and an external extension 
mechanism. "e first technique is similar to the delegation chains used for event 
handling in many windowing frameworks. But I extend this idea to allow arbi-
trary method calls to be propagated up a branching container chain in a breadth 
first fashion: from element, to containing elements, to the sheet and eventually 
to an interface to the containing agent. All of the event handling, execution and 
visual presentation is handled in this open, over-ridable way.

Data storage acts in a similar way to the delegation chain, external to the visual 
element itself. "e component of “plug-in” architecture of Fluid is fundamental, 
rather than just an extra layer of extensibility. Python code execution is a plug-
in, time-markers, constraint systems are plug-ins, the very visual position and 
size of the “visual” element is maintained by a plug-in. "e actual information 
maintained by the visual element itself consists of nothing more than a unique 
ID. Plug-ins are added to the sheet and as a result offer the ability to set, get, 
store and delete properties with respect to this tree of containers. "is allows 

the Cocoa application framework 
that is used to implement Fluid also 

uses delegation chains in part to 
deliver events from input devices to 

visual elements, and to delegate 
method calls; Fluid extends this 

technique to include the storage of 
attributes.

 367



plug-ins to overlay services into the sheet: by manipulating the container chain, 
plug-ins can affect the default behavior of some or all of the visual elements. 
"is allows extensions to the Fluid system that are “multiplicative” rather than 
“additive”, extensions that alter the ways that sets of visual elements can execute, 
combine and can be manipulated, what the visual elements actually present 
visually, and how they act visually. "is is in stark contrast to systems such as 
Max where “externals” simply add to the numerical quantity of the modules 
available.

Secondly, although the quantity of code stored by any one sheet is much smaller 
than that of the framework supporting it, the situation is just as important from 
a storage perspective. For in order commit to an environment one has to trust 
that it will always be able to recover one's work even after a several month hia-
tus, during which time the agent framework might have changed, but more im-
portantly Fluid itself might have undergone revision. "e file structures of Fluid 
were explicitly designed to allow the environment to grow without loosing the 
ability to load previously saved files. "is, in itself, isn't a particularly hard prob-
lem, and can be achieved by storing versioning information  in the files (for simi-
lar techniques, see the long-term learning database, page 127). However, it's also 
important that the environment can shrink or that sheets can be loaded into 
and saved from completely different environments. So, for the purposes of long 
term storage, data travels with both the plug-in and with visual element. Un-
known data is both carefully ignored, carefully propagated, and in most cases 
still accessible even in the absence of an actually executing plug-in. Plug-ins are 
defensively coded to verify the relationship between their internal structures 
and what remains in the individual visual elements upon load. In practice, two-
year old sheets are still loadable today.

 368

a running code box
overridden spatial connection

figure 139.  Code elements linked together, either by 
hand or by code.



Connectivity

In fashion similar to that of data-flow environments, we can add to our ele-
ments inputs and outputs and begin to draw connections between boxes. "e 
values at the connections can be push from outputs to input from within the 
Python environment:

_output[0] = 5

 — but these connections are not necessarily for data-flow. "ese connections 
manifest themselves as set variables inside the Python environment: 

print _input[0]

 369

overridden spatial connection fading traces of connection

figure 140. "e history of ephemeral, implicit 
connections between modules can be visualized as a 

separate “layer” to the environment. Such connections are 
gathered automatically monitoring the Python 

interpreter.



however they do not necessarily “represent” the flow of data. "ey might repre-
sent the aliasing and thus sharing of variables between otherwise local python 
namespaces. 

From the output module:

makeAliasOutput(0, “a”)

a = 5

declares that the variable a will alias the zero-th output, and from the input vis-
ual element we might have:

makeAliasInput(0, “a”)

print a

By going further, and propagating not values, but small objects that reference 
the visual elements from which they come, visual elements can conspire to ap-
pear to implement a style of data-flow programming.

 370



From the output module, it looks the same:

makeLiveOutput(0, “a”)

a = 5

declares that the variable a will alias the zero-th output and sets things up to 
allow this visual element to be executed if needed to evaluate a. From the input 
visual element we might have:

makeLiveInput(0, “a”)

print a

What are the contents of these small objects? Since anything can, with the assis-
tance of a Runner, ask for the execution of another element, these objects ask for 
just that — to ensure that it has the latest value at its inputs. "ese executions 
are safe and timely: aware of that runner's life-cycle state diagram and thus the 
element that is asking for the computation is guaranteed to both maintain the 
correct life-cycle contract of the element and only cause one execution per exe-
cution cycle. "is hybridizes a pull-based data-flow style with a more orderly 
time-marker style, proving that data-flow, variable execution and alternative 
visual metaphors can coexist on a single interactive surface.

In data-flow environments, one connects boxes and these boxes remain visually 
connected — as a “visualization” of the history of interaction, and as a “user in-
terface” that allows the connection to be broken, and restored. Since Fluid visual 
elements contain code, Fluid offers many other ways of “connecting” elements 
together by writing code rather than by interacting with the sheet using a 
mouse: code can look up an element by name, by regular expression; code can 
find the visual element to the left of it, all of the visual elements underneath it. 
"at these global or spatial lookups can be written in code rather than made by 
mouse-clicks is a fundamental result of the principle that code can “see” the vis-

 371

same duration 
constraint

start inequality
same end 
constraint

abut constraint
figure 141. Fluid allows 

a traditional range of 
constraints, but a novel 

“soft constraint” mecha-
nism.



ual layout of the sheet. However, at the same time, there is much to be said for 
allowing the environment to provide a “visualization” of what that code is doing 
and a “user interface” for allowing these connections to be rearranged. 

"e solution is to construct a visualization layer that, by collecting information 
from the python environment, as it is executing code, annotates the sheet with 
the connections that the code makes and offers the opportunity for these con-
nections — which might be one visual element connecting to an element to the 
“left” of it — to be frozen or reconnected. "ese layers are translucent, optional 
and overlay the sheet — they are coupled to the sheet through the plug-in archi-
tecture.

Inside the Python these connections look like:

target = leftOf()

or

target = find(“fade out *”)[0]

"is provides enough stability and flexibility that the layer can edit the envi-
ronment of the visual element to ensure that connections overridden by direct 
interaction continue to be overridden. "e connections fade over time as they 
remain unmentioned by the executing code.

"ere are additional reasons why we would like to be able to trap and interpose 
all references to external visual elements by the code inside a particular visual 
element. We'll see the importance of being able to draw a circle around the con-
text accessed by an element when we look at recording the history of interaction 
with Fluid, page 390.

"is highlights two of the design principles: that code and visual elements 
should coexist on the same sheet, and that the history of using the environment 

leftOf(), find(...) etc. return Python 
objects that masquerade as refer-

ences to other visual elements, and 
exploit the _attributes dictionary to 

ensure that they remember whether 
or not they have been overridden in 

the sheet. 

 372



should be reincorporated into the environment. "is interplay between making 
the results of code visual and turning visualizations back into code is what con-
stitutes one axis of “fluidity” inside Fluid. But before picking up the thread of 
incorporating use history into tools in a more focused fashion, I will survey 
some of the other kinds of layers implemented in the current Fluid system and 
how they are used.

Multiplicative extensions — Alternative layers 

Of the most important layers available in the current version of Fluid are the 
constraint systems. Constraints have a long history in visual layout tools — in 
particular they form the very basis of one of the very first visual layout tools 
Ivan Sutherland's seminal Sketchpad system. But, despite Sketchpad's hybrid 
programming / drawing approach, visual layout constraints are completely ab-
sent from the history of visual programming environments for digital art — 
present neither as a tool in the Max/Isadora/vvvv series , for visual layout is 
unimportant in these applications. Paradoxically, each of these graphical sys-
tems offer less support for fast visual layout than most drawing or painting ap-
plications.

However, when the visual layout of the sheet means something — to the code 
contained as well as to the user — and when the environment is the platform 
for a certain amount of improvisation, it is important to allow the specification 
of more complex and quick manipulations of visual element layout. 

Two constraint systems are implemented inside Fluid, both have the same in-
terface and appearance and allow a conventional set of constraints to be speci-
fied on the layout of the visual elements. Same, Before (and by inverting the pa-
rameters After) relative constraints on both the start and the end of elements; 
Same, Bigger (and thus Smaller) on the duration of elements. "ese constraints 

I. Sutherland, Sketchpad : a Man-Machine 
graphical communication system,Annual ACM 

IEEE Design Automation Conference, 1964.

 373



can be applied to visual elements that group visual elements (and distort their 
contained children equally when needed). Finally, elements positions can be 
pinned to a particular spot — this allows all of the previous, relative, constraints 
to have an absolute aspect, since visual elements to represent absolute positions 
and sizes can be created with ease.

"e perennial problem with constraints, however, is that it is extremely easy to 
construct over-constrained systems, and extremely hard to build fast but stable 
solvers for these systems. Although much work was done in Sketchpad and af-
terwards to address these issues, Fluid dodges the problem creating two con-
straint implementations, neither of which has any claim to optimality, but 
rather a focus on stability and speed of execution. In the future, a more complex 
linear-programming-based constraint system could be implemented.

"e first constraint system is a rather typical damped iterative solver that tries 
the best that it can, with a decaying amount of effort, to maintain each of the 
constraints in turn. Should a constraint be broken (due to over constraining) it 
is brightly indicated on the sheet. "is ad hoc solution works well for under-
constrained problems and tends to break stably in over-constrained situations. 
Never has a sheet “exploded” during all of the improvisatory use of Fluid in de-
veloping how long..., 22 or Imagery for Jeux Deux.

"e second constraint system is a little different. It is based on the generic 
radial-basis channel formulation for competing processes. In under-constrained 
domains it acts the same as first constraint system — it is a damped, iterative 
solution to the problem. However, rather than trying to find a nearby, stable 
solution to an over-constrained problem, the competitive channel representa-
tion gives each constraint a certain amount of time to apply. "is “solver” actively 
explores the over-constrained partial-solution space, generating not an attempt 
at a single solution, but an ongoing animation. To date I have used this solely as 

 374



an exploratory technique (for the generation of rhythmic cells that are per-
turbed in different ways), or a visualization technique for the similar Diagram 
based processes of Loops Score, page 241. It is expected that in the future that 
this technique will autonomously create rich rhythmic patterns in the domain 
of motor systems on its own.

Regardless, the constraint system is perfect for making visual and maintaining 
the ordering constraints of the visual elements code — that one thing should 
take place before another, or that this visual element cannot end before another 
— that allow sheets to be quickly reorganized during rehearsal before calling 
upon a time-marker to “scrub” with. 

Another available layer is related to the constraints system — the layout snap-
shot. "is is a duplication of a sheet (in the sense given below, page 390) that 
saves the positions and sizes of the all the elements. "is layout can then be 
blended with the current layout. New visual elements that are not present in the 
saved copy can remain stationary or, more usefully, can get pulled around by the 
nearby saved elements movement. "is reuses the same techniques as found in 
the Diagram channel system, page 232. A pose-graph-based view of these snap-
shots exists, and in the future we might see an agent acting upon a Fluid sheet 
itself.

Fast visualization for the agent toolkit

During the use of the agent toolkit many programmers — inside and outside 
the Synthetic Characters Group, myself included — have produced carefully 
crafted visualizers and debugging tools for various systems. At any given time 
one could expect to find a motor system visualizer or two, three or four for the 
context tree and so on at various stages in the development of the agent toolkit. 
With modern, graphical tools, building and maintaining these tools isn't hard, 

 375



nor is it as time consuming as it used to be. But it does require a constant effort 
parallel to the development of the system being visualized. And there is a con-
stant tension between creating a well-designed interface (code) for the interface 
(visual) and creating one quickly. As a result, these carefully crafted visualizers 
are often out of date at any particular point in time — if, that is, they get created 
at all.

Fluid potentially offers much more than either a hand-crafted visualizer or a 
traditional debugger since it integrates graphical user interface construction 
tools, code execution and domain specific storage in one place. In order to bring 
the toolkit closer to the Fluid sheet, it is important that the toolkit can offer 
objects to the sheet on an equal level to the visual elements; that agent toolkit 
objects can be visual elements — that one can connect to the motor system or a 
pose in the pose-graph, visually and spatially. "is is important even in the sim-
plest, and least “creative” use of Fluid — having a sheet be a place where visuali-
zations of a running system can take place. 

 376

figure 142. 
A dynamically created, ad hoc 

debug display and interface



Clearly, it isn't hard to have the toolkit load a sheet and procedurally create vis-
ual elements inside it, but some caution is needed — if these “offered” visual 
elements are to fully participate in the Fluid framework they need to participate 
in the long term storage of the sheet. "is implies that offered elements, which 
are free to change in number and nature from invocation, to invocation must be 
matched up with visual elements that are free to be edited, moved around and 
otherwise adorned as they are loaded from the persistent store. 

"ree sets of parameters must be considered in this merge — the new creation 
parameters offered by the toolkit, the creation parameters previously offered by 
the toolkit (at the last occasion that the sheet was saved) and the parameters 
now specified by the sheet itself. "e differences between the first two are ap-
plied to the third unless there are corresponding differences between the last 
two — this is the classic, three-difference merge algorithm applied across a set 
of attributes, and the visual element position. Later, we will see another applica-
tion of this algorithm to the textural contents of the visual elements, page 390.

Once offered, these visual elements are now a bridge between the agent-toolkit 
and Fluid. However, both parties ought to be able to create simple layouts and 
interfaces that are more complicated than a simple box. Fluid, of course, allows 
one to surround these offered elements with code and other visual elements. 

Yet at the same we should realize that most “debugging code” exists inside the 
agent toolkit as textual output not user-interface construction code —  how 
should these pieces of text describe user-interface layout? "e quickest and 
simplest debugging output statement from deep inside the agent toolkit looks 
like the following:

 stream.println(” motor system value :”+amount);

For an overview of the three- 
way merge algorithm —

 T. Mens. A state-of-the-art survey 
on software merging. IEEE 

Transactions on Software En-
gineering, 28(5), 2002.

 377



"ese statements are ubiquitous throughout programming — stream could be 
an interface to a complex logging interface or simply an interface to the system 
log. "e sheer number of statements like the above make the use of such code 
seem almost inevitable. "e prevalence of these lines inside the agent-toolkit 
seemed impervious to the increasing flexibility and availability of visual user 
interface design tools prior to Fluid. All collaborations (and all programming 
collaborators), from alphaWolf to how long..., include these lines. 

It's not hard to see why they might be more maintainable than a hand con-
structed interface —  they are programmatically described, compiled with the 
system that is being investigated and require no interface for that system to be 
created and maintained simply to get at the misbehaving number. If, in com-
parison to contemporary data-flow tools we are to conceptually embed complex 
systems inside our visual elements, rather than construct complex systems with 
visual elements, there ought to be a way for these opaque complex systems to 
talk back to the visual elements.

So we start here, with the kind of talking that seems so prevalent, and construct 
a incrementally more complex “stream visual interface” to the visual element. 
Offered visual elements provide an object, “stream”, that can be written to as 
above. We augment the traditional stream output with the following features 
which augment the visual layout of the stream and provide a lightweight bridge 
to the Fluid's visual elements:

Text “lines” become rows in an outline view — rows are collected only for a 
fixed number of update cycles and such cycles group the output; the ele-
ments “[[name” and “]]” bracket sub branches of the tree. This allows the 
debugging output to be presented in a hierarchical, multi-resolution fash-
ion. 

 378



html processing tags are acceptable — since we are free from the assump-
tion of plain-text output there is no reason not to allow a subset of the 
rich-text format to be displayed.

Stable user-interface objects are possible — the tag 
“<button name='name'> label </button>” writes “label” not in an hierarchi-
cal outline-view text row, but rather a button in the row; the tag 
“<slider name='name'>label</slider>” makes a labeled slider. 

"e values for these two interface elements are written as attributes to 
the visual element and can be read by the agent toolkit as:

stream.getAttribute(name)

From the Python interface these attributes are read and written simply as the 
value “_attributes.name”. "e hierarchy of debugging output can be parsed (in 
plain text) through an object called _debugStream. For example:

_debugStream[2] is equal to “motor system value :5.0”

and 

_debugStream.motorSystem[0] is equal to “at SIT”

"ese two accesses to the debugging information mean that the visual elements 
that surround the offered element, and the code inside the offered element can 
access everything about the ad hoc debugging interface's output. "is text-based 
graphical visualization completely avoids the overhead and complexities of cre-
ating visual interfaces and code interfaces that they connect to, which is a par-
ticularly error-prone area of programming. One must take special care to main-
tain the same behavior of a system regardless of whether anyone is looking or 
not. "is often requires the caching away of transient data and, depending on 
the windowing toolkit used, may even have thread-safety issues. "e near inevi-

 379



tability of text-based debug output, and the error-prone nature of the mix of 
user-interface code inside the agent-toolkit stands as one of the lessons learned 
from the complex collaborative endeavors from alphaWolf to how long.... "is 
push-based debugging, although offering a more generic, more rudimentary 
visual presentation, meets the complex code-base where it stands — the rest of 
the Fluid environment can be used to customize the presentation of informa-
tion. Fluid becomes a site of interactive visualization and investigation that 
meets the agent-toolkit on the toolkit's own terms.

Expressing history

During the course of creating the piece how long... the master sheet that con-
trolled the piece was loaded and modified 206 times; secondary sheets, for test-
ing elements and working on specific sections were loaded and modified 3223 
times. With the exception of  some 45 unexpected fatal crashes which may have 
resulted in data-loss, a detailed history of the creation of the piece, and all other 

 380stack of read / write 
access to a global 

variable

figure 143. "is figure 
shows a, live, layered 

display indicating read 
and write access to a 
sheet-local variable



works created in Fluid since May 2004 (when the database came online), was 
stored. But what is a “detailed history” of working inside Fluid? and, equally 
important, how should it be made available to the tool itself? 

Programmers have long surrounded even solo work with versioning systems 
that allow them to consciously checkpoint their work — storing it a central 
database format. Concurrent versioning systems, designed for more than one 
programmer to work on a set of resources at the same time, are also the back-
bone of both the open-source movement and almost all large closed-source 
development models. "is is very much prehistoric computer science — the 
core formats and algorithms for storing and generating annotated views of the 
changes that resources undergo in these systems have been found and fixed for 
decades.

But the importance of making the history of the development present in the 
tool itself was brought to my attention in at least three ways. Firstly, the pres-
ence of the “commented history” throughout the text of alphaWolf, figure [x], 
page [x]. If this history was so important as to be preserved in the files itself, 
despite universal struggles with the bulk and complexity of those files perhaps 
this is an indication not only of the important of developmental history but the 
inadequacies of conventional version control tools (which were also, of course, 
very much in use during alphaWolf).  Secondly the realization that I repeatedly 
required access to the history of many of my persistent stores — the long-term 
learning databases of !e Music Creatures, page 127, and the bundles of parame-
ters in Loops, page 98. "is history was not always in a form that conventional 
version control systems found easy to use.

Finally, watching my own work patterns inside Fluid I identified a number of 
cases where having history at my disposal would prove useful. "e simplest case 
is execution history. In a fully through-out sheet execution is often under the 

For a history of one of the oldest version 
control systems that is still in use today:  

http://www.gnu.org/software/rcs/rcs.html

 381



control of the visual elements themselves — intersecting time-markers, moving 
visual elements, running scripts and so on. However, early in the development 
of something, or when some specific case is being explored, execution is often 
much more piecemeal — one has found a case that doesn't quite work right, or 
one is beginning to test a new component — through highlight parts of code 
and executing them, using a Fluid sheet as a sketchbook to sample from rather 
than as a place to put ideas down. Further, in improvisations one is often mov-
ing too fast to remember what one is doing.

What each of these cases really needs is the execution history of a sheet and its 
attached textual editors — what code, in what elements, when. Early in the de-
velopment, when executing samples from a sheet, or samples from a long un-
structured piece of textual code, one ends up trying the same pattern of execu-
tion repeatedly — to get back to the place where a problem occurs or where the 
horizon of knowledge lies. In improvisational contexts one needs to go back and 
look at what was done in the heat of the moment. "e solution is to begin to 
look at ways of turning the execution of a sheet into a new sheet.

 382

runner executed element runner executed element hand executed 
elements

edited, hand 
executed

executor

text (with 
reference to 
original element)

time remapping 
graph

figure 144. "is sheet was automatically 
created from the interaction history with 

another. "is “unrolling” of a marker sweep 
and piecemeal execution of code inside 
visual elements is itself executable and 

remains linked to the original sheet.



As a naïve start, we can take each executed element and copy them to a new 
sheet, a time-line sheet, where execution time runs monotonically and evenly 
from left to right. "is, for example, “unrolls” or flattens-out any temporal ma-
nipulation that was happening to an underlying time-line sheet or “scores” an 
improvisation that sampled from various parts of a sheet in an ad hoc fashion. 
Since highlighted snippets of code can be executed in the textual editor, these 
need to have visual elements created for them. "is is the (visual) equivalent of 
converting a marker generator in the Diagram framework to a channel repre-
sentation.

"is unrolling must carefully propagate a snapshot of the local environment of 
the visual element at the time that the element or snippet was executed to the 
newly created elements — otherwise the new sheet will not perform in the 
same way when executed. "ere are up to three places that this “local state” can 
be put in relation to the newly created visual elements: back inside the local con-
text of the visual element, as an explicit addition to the code stored in the ele-
ment and as a separate, but (visually) linked element on the sheet. 

"e “local context” to a piece of code executing inside a Fluid visual element is a 
rather complex affair — but in all cases we can trap it by a placing a few hooks 
into the Python interpreter. "e complete context caught by the unrolling his-
tory functionality is as follows:

Python-level local variable access — this needs to be recorded in the un-
rolled sheet, if it is read by the visual element or script before being writ-
ten to. It can be a separate element — injecting a value into the new ele-
ment's local variable space — or additional code in the new element's tex-
tual description.

context-tree variable access — very similar to local variable access; writes 
and reads are typically annotated on the unrolled “score” as separate visual 

 383

group reinterprets elements 
contained within"unrolled" variable read

"unrolled" variable write — now 
posts to radial basis channel figure 145. "is sheet, generated by unroll-

ing another, has had some variable accesses 
grouped together inside a subgroup that 

“reinterprets” the code that writes to those 
variables. Now, rather than directly setting 

values, postings are sent to a generic radial-
basis channel.



elements. Making these global accesses explicit is a useful visualization 
understanding. Below we shall see more advanced uses of this score-like 
style.

visual element persistent attributes — visual elements have a stored (across 
loading and saving sheets) set of attributes that can be read or written by 
code, or by inspectors. Reading or writing these requires duplication in the 
new visual element. This is always performed by making new stored at-
tributes.

sheet-level access — what should operations which result in obtaining ref-
erences to other visual elements return in the duplicated sheet? Should a 
visual element A find a visual element B that also ends up duplicated in the 
unrolled sheet then we can transport the reference, making a new refer-
ence from the duplicate A' to the duplicate B'. Should B not already be du-
plicated, then we either have to try to copy B or make a new reference to 
the original element B. Currently this second operation seems well defined 
and Fluid makes a cross-sheet reference A'->B and allows this reference 
(using the same techniques as we use for overriding spatial references, page 
379) to automatically load the missing sheet, if needs be, on access.

Since these “visualizations” of the interaction history are executable, we can 
sweep time across the sheet and play back what was done before. We are free to 
take these sheets and begin to edit them — changing the order of operations, 
splicing them with alternative takes, etc. We are also free to re-express their con-
tents in a different way. One highly useful modification of a sheet that is typi-
cally produced by this unrolling is to take variable access and replace it with ge-
neric radial-basis channel postings. 

"e new group, surrounding the variable reads and writes re-interprets the con-
tents of the code below — wrapping the execution environment of the visual 

 384



elements in a structure that maps variable access to generic radial-basis access. 
One channel (sharing a time-base with the sheet) per variable is created as 
needed by monitoring the underlying Python interpreter for global variables, 
and temporarily overriding the object that is used for context-tree access. Writes 
become postings (with window parameters set by the duration of the visual 
element) and all reads return python objects that masquerade as numbers, but 
access the corresponding channel. 

Even without their modifiable executability, these unrolled sheets or score-like 
diagrams have been extremely useful in both remembering and showing what 
happened in an improvisation that takes place in a theater under time con-
straints dictated by dancers and musicians. But this kind of use is a short-term 
use: logging information taken in the moment is there to be looked at soon after 
and understood, perhaps played and replayed with a little more, but strictly 
from the point of view of understanding what took place.

"ese sheets, as described thus far, cannot offer a longer term record of what is 
taking place, because they go out of date. "ey loose their connection to the 
sheets whose execution they annotated when those sheets change. "ey are a 
tool for recording only so far as they become separate from what it is that they 
record. Is there a deeper way to link the record of an improvisation around a 
sheet to the sheet while, at the same time, maintaining this connection through 
potentially separate evolutions of these sheets? A history of interaction with a 
tool that isn't a frozen record but a new view onto the material interacted with?

A network of text: copy & paste as a version control system

At the root of this issue is the problem of duplicated textual code. Currently 
copy and paste is a ubiquitous part of any textual interface — there is hardly 
any text box or textual widget that does not support this on any contemporary 

 385



windowing system. However, a copy and paste 
operation leaves no process trace. Further, the 
nature of the process, this duplication of code, is 
invisible to extant programmers’ version control 
systems. "ese systems realize that code has been 
added somewhere, but do not retain the connec-
tion between the copied and the copy — for that 
connection is lost a long time before the version-
ing system operates on the file. Typically this is 
not a significant problem in versioning control — 
versioning systems are so old now, that had it 
been a problem we might have seen a good few 
solutions, especially as such systems are being 
integrated into programming environments. 
Copy and paste, after all, is often considered a 
symptom of a poor programming infrastructure, 
and some of the classic design patterns and in-
deed some of the motivations for object oriented-
programming itself are to reduce the amount of 
code that has to be copied and pasted in order to 
program. 

However, the theoretical goals of a programming 
language and its use in practice often diverge 
dramatically — despite the inability to accurately 
reconstruct the copy and paste history of, for ex-
ample, the source code files of alphaWolf one can 
feel its presence throughout. "e simple solidity 
of taking one element that is known to be tested 
and working and duplicating it (rather than refac-

 386

def initialize():
print "starting up"
_attributes.speed = 5
c.mb_rw=0.3
c.mb0=0

def initialize():
print "starting up"
_attributes.speed = 5
c.mb_rw=0.3
c.mb0=0

def go():
yield 1
while true:

c.mb0=_t*0.3
yield 1

r = (initialize, go, go)

copy, 
paste

def initialize():
_attributes.speed = 3
c.mb_rw=0.2
c.mb0=0.5

def end():
c.mb0=0
[x.name for x in 

_attributes.lineSystem.lines if 
x.length>4]

r = (initialize, nothing, end)

edit

def initialize():
print "starting up"
_attributes.speed = 4
c.mb_rw=0.3
c.mb0=0

def go():
yield 1
while true:

c.mb0=_t*0.3
yield 1

r = (initialize, go, go)

edit

compare

def initialize():
print "starting up"
_attributes.speed = 5
c.mb_rw=0.3
c.mb0=0

def initialize():
print "starting up"
_attributes.speed = 4
c.mb_rw=0.3
c.mb0=0

def initialize():
_attributes.speed = 3
c.mb_rw=0.2
c.mb0=0.5

original (root)

original now

pasted

figure 146. Copy, paste and edit creates a versioning “problem” and an 
opportunity to use the three-way difference algorithm to inspect the 

history of snippets of code that are transfered around and across sheets.



toring it in such a way that it can be multiply instantiated in doing so potentially 
break what is known to be working) is a powerful temptation even for the best 
programmers when under pressure.

In any case, in Fluid, we are are operating in a completely different domain from 
where these arguments for careful object-oriented design typically take place. 
Rather than large, re-factorable, and pre-thought out complex code-bases, 
Fluid's visual elements are an ad hoc, often improvised arrangement of very 
small parts. "at copying code is simply the fastest and easiest thing to do 
(rather than re-factoring the design of material inside a visual element) is much 
less avoidable in this domain. Rather than reinventing the theory of re-factoring 
to cope with the kind of fragmentary, poorly planned, spontaneous code that 
Fluid encourages and circumstances dictate, we do the opposite — shape the 
tool around the use, and open up the history of duplication to the versioning 
systems.

"us, in Fluid, copy and paste operations leave persistent process traces. Fluid 
exploits the commonly used rich-text format for the storage and the presentation 
of code to the user.  By embedding custom tags inside the text structure of a 
modern text formating system we can annotate the relationship between the 
copied and the copy in a persistent fashion. We can then recreate the common 
versioning system operations not in terms of files of code, but of chains of cop-
ied and pasted elements.

 387

partial database 
view

resource / 
pointer editor 

(live)

database explorer is visual 
element (just like everything else)

figure 147. "e text database explorer interface can be manipulated 
from within the fluid environment — it is constructed from visual ele-

ments.



Given a snippet of text we can perform the following three operations on it with 
respect to viewing its history:

show resource — when a copy / paste relationship is first created a resource 
is created with it. This is the central representation and marks that this 
particular piece of code is important and should be tracked. Everything 
else, the copied and the copy, has a relationship with this resource. By 
looking at the resource we can then see everywhere this text ended up, or 
where it came from. By looking at these resources, we can compare how 
they have changed, or how they are being used. We can begin to examine 
the ramifications of changing something that this code depends on, and 
begin to repair it when we do change it.

force changes to (resource, later, earlier, all)  — this forces an overwrite of 
the contents of the text snippet-to the resource or to a subset of children 
of the resource. The labels “later”,  “earlier” and “all” refer to child snippets 
that were created either later or earlier than this particular snippet of text.

merge changes to (later, earlier, all) — this performs a three-way difference 
merge with this text, its resource and each of the places linked to this text 
that appeared after or before this relationship was created. This difference 
/ merge algorithm is standard as part of a concurrent version system — 
here, however, it isn't the work of different programmers at different times 
that are being considered as happening “concurrently”, it is the work of one 
programmer in a number of places. Unlike version-control systems, the 
“files” (fragments of text spread across visual elements and sheets) that 
need to be considered are being automatically inferred. Collisions (incom-
patible, “simultaneous” changes of text that cannot be reconciled) are 
flagged for special handling.

!e rich text format  —  
http://www.microsoft.com/downloads/deta
ils.aspx?FamilyID=ac57de32-17f0-4b46-9e4

e-467ef9bc5540&displaylang=en

!e use of it here depends on the application framework’s 
handling of alien RTF tags, which seems implied by the 

specification. !ese tags are, in the current implementation 
in Cocoa under Macintosh OS X persistent across all appli-

cations that deal with text, not just internal to Fluid — they 
mark blocks of text as having references to a database 

through the use of unique IDs.

 388



loose snippet (resource, all) — breaks the connection that this piece of text 
has with the database with respect to a single database resource or with 
respect to all resources associated with this snippet.

"e interface shows an local, hierarchical view of the database — resources 
point to snippets (ordered in time) as children; snippets have a resource and a 
visual element associated with them; visual elements contain multiple snippets. 
"e textual contents of all these elements can be browsed and edited without 
loading the associated sheets. "e database of resources and concurrent snippet 
versions is maintained in parallel with the text storage of the individual sheets. 
"is provides safety in redundancy (since Fluid remains an experimental and 
evolving system);  at any time we could delete the entire database, loosing the 
text level history information, but maintain the present state of the sheets to-
gether with their version history (maintained in a more traditional version con-
trol system).

Finally, while I have described this system as one fore keeping track of where 
copy and pasted code ends up — maintaining the relationship between copied 
and the copy on behalf of the programmer — it also serves to maintain a con-
nection between the unrolled sheets and the sheets that were unrolled  — on 
behalf of the Fluid system itself.

!e flow of time — more controllable time markers

"e central idea behind the time-marker on a sheet is to allow a visual envi-
ronment to start with what I believe is the one of the most central parts of the 
problem of digital art — the patterning of time. And, in starting here, we start 
by analogy to the representation most present in the temporal arts — the linear 
score. 

 389



While I have argued that the agents constructed for the work I’ve presented do 
an excellent job of patterning the time that they occupy, and an equally satisfac-
tory job of provoking ways of thinking about how that time of interaction could 
be filled, in many works there has been a layer either above or below the agents 
that has had a strongly score-like flavor to it. In Loops I constructed a colony of 
creatures capped by a score and noted that this began to look like a motor sys-
tem of another super-agent, page 101; in how long... I deploy agents throughout 
the work but organizing their sequence and overlap in a fairly linear fashion to 
align with the performance, page 353; Lifelike is performed in a similar way, with 
a more complicated overlapping of less complex agents; in 22 we are in effect 
seizing control over the material that the motor system of the agent there uses, 
page 269; at the detailed levels of parts of how long... we are constructing move-
ment out of overlapping linear sequences, page 341; in Loops Score, there is 
again, a score not of notes but of opportunities for action, a “perceptual score”, 
page 242. In each of these examples we are not so much scripting the actions 
that the agents will take, depriving the metaphor of its idea of autonomy; rather 
we are either scripting the manipulation of part of the perceptual world that the 
agents are in or providing scripts for the agents to in turn manipulate. In both 
cases the lines of these linearities cut right through hundreds of files of code and 
we are forced to tools such as Fluid to make these broad strokes or detailed ma-
nipulations.

But clearly, this linear, or perhaps more accurately, the monotonic, score is the 
point of departure not destination. "us we should begin to break down and 
complicate this scripting environment to bring it closer to the agent toolkit that 
it intersects with.

First, I shall look at a few mechanisms for controlling the time-marker as it 
moves across the sheet. "en, as these mechanisms get more sophisticated they 
will lead to multiple time-markers — time-markers that are concurrent, and 

 390

posting to rate channel 
causes permanent 

time shift 

posting to time 
channel causes 

transient time shift 

"Time"

"Rate"

constant "base" 
rate

figure 148. Two generic radial-basis channels control the movement of a 
time marker allowing both changes to the position that are both tran-
sient (in the sense that the duration of the work does not change) and 

permanent.  



markers that are under the control of some other organizing principle.

Improvisation on a time-marker sheet often takes the form of a combination of 
hand-executing visual elements, sweeping the time-maker, playing back previ-
ously made time-marker “scrubs” and of course, sometimes executing individual 
pieces of code straight from the text editor. 

For example, consider a time-marker that is under procedural control, moving 
from time A to time B over a certain duration. How can a visual element that 
this marker strikes change the flow of movement? Perhaps it might try to slow 
down or pause until an event occurs, perhaps it might skip ahead to catch up 
with some other process, perhaps it might loop backwards to the beginning of 
some sequence while a condition has not occurred. "us, we might consider 
two kinds of alterations: alterations of the speed of onward time flow, and un-
connected jumps. However, these two categories obscure two other, perhaps 
more useful, categories: time modifications that are temporary and time modifi-
cations that are permanent.  

It is hard to overestimate the need to both calculate and fix durations, to both 
give and receive durations, during a collaboration around a time-based work. 
Sheets of durations have always occurred as common language throughout all 
stages of development of how long..., 22, imagery for Jeux Deux, and even (rather 
illicitly since it was for a Cunningham stage work), in Lifelike. Even works that 
appear far removed from the problems of occupying a period of time have such 
“ballistically scored” elements: the development of alphaWolf would have bene-
fitted noticeably for the addition of such a representation for handling both the 
large scale life cycle of the piece (a 5 minute “growing up period” of the wolves) 
and the small contrivances of the scene setting introduction (falling asleep and 
being woken up by the participants). Such “scripts”, be them interactively modi-
fiable, cut across whole action systems and are hard to bring about in piecemeal, 

 391



distributed architectures. it is appropriate to construct tools and passages of 
time that have more global and graphical views over the agent and its environ-
ment.  

Of course, in remaining open to the interactive possibilities of the environment, 
such scores or scripts often don’t remain ballistic for long. "e importance of 
maintaining interactivity under a fixed duration constraint has ramifications for 
any process that wants to change how time flows through a work. In an area 
that ought to have a fixed duration its simple control of the rate of our time-
marker is meaningless at best, and dangerous at worse. Rather, it is much more 
important to be able to, for example, slow down the apparent movement of time 
in such a way that it will speed up later to exactly compensate. Such non-
permanent changes are vital if we are to be serious about moving away from the 
fixed linear score. Of course some changes are permanent — the duration of 
how long...  varies by 10 seconds in performance and perhaps even 90 seconds 
during rehearsal because of permanent changes in the positions and durations 
of sections.

One time-marker control system that I have had recourse to in both how long... 
and 22 stacks two generic radial-basis channels: one controls the rate of increase 
of time which feeds into a permanent posting in a second channel that controls 
the time itself. "is posting integrates these instantaneous rates to come up 
with a current time. Temporary pauses, speed-ups and even loops are placed as 
postings in this second channel — and placed with considerable weight in order 
to have an effect — permanent changes are expressed in terms of changing the 
value of the rate channel by introducing a (temporary) posting. 

"is approach works well for both how long... and 22. In the former, there is a 
very minimal description of what agents get created and destroyed that is played 
out by a time marker. "is high level sheet contains visual elements that them-

 392



selves contain and run sheets. In how long... these sub-sheets are also reasonably 
simple (perhaps ten elements) but at the top level, there is a single time marker 
controlled by this two level generic radial-basis channel. "is time marker is set 
to move through the piece, over thirty minutes, but at several places time is 
temporarily paused, waiting for cues from the global choreographic tracking 
system; in three places it is permanently paused effectively waiting for permis-
sion to continue, and in two of these places there is a “hand cue” (one corre-
sponding to a particularly difficult to capture rapid entrance, and one corre-
sponding to the very end of the piece). In 22 the situation is rather more com-
plex, because the world to be scripted is rather more complex — the piece in-
corporates, in addition to the main manipulation of video and geometry, textual 
elements, linear graphical elements and a rather complex system of cuing signals 
sent to the music. In this work the usefulness of a single time-marker begins to 
break down.

To see how Fluid might manage a move to multiple time-markers, we should 
first look at how visual elements control the time-marker of the sheet that they 
are on. "ere are two levels of control — a direct-drive “scripting” interface and 
an indirect or “deferral” specification.

"e direct-drive interface is extremely direct — instantaneous Python state-
ments have permanent or temporary effects on the time marker through two 
time objects — time and tempTime. "e following examples should convey the 
directness and the usefulness of the lines of code that can be constructed using 
these objects.

time.now = 40 — sets the time to be 40, this is a “permanent” change and 
there is no compensating speedup or slowdown. Behind the scenes, a in-
stantaneous change to the rate channel causes the jump. Hence, time.now 
= startOf(”beginning”) — goes back to the start of the visual element 
called “beginning”; time.now = time.now -40 — jumps back 40 units.

 393

main sheet time 
marker

descendant — 
subgroup local 

time marker, drifts 
forward at different 

rate

figure 149. A main marker has been 
“reinterpreted” by two subgroups, 

fissioning their parent marker.



tempTime.now = 40 — sets the time to be 40, this is a “temporary” change, 
made by adding a posting to the time position marker that lasts, by default 
around 10 seconds with weight 1. For finer control: tempTime.now = {to: 
40, duration:5, weight:100, bias:1} — sets the time to 40, for around 5 sec-
onds, with weight 100, with a window strongly biased towards the start, 
giving a percussive jump to the beginning and a long “ease-out”. Hence, 
tempTime.now = {to:time.now-40, weight: lambda t : t*100} — jumps back 40 
with a channel window function that gets stronger as time goes on.

time.line = {to:40, over:10} — animates time from wherever the marker cur-
rently happens to be, to 40 over 10 seconds. This is, again, a permanent 
change and is actually performed by modifying the rate channel.  Hence: 
time.now=0; time.line = {to:40, over:10, weight:0.5} — jumps to the very 
edge of the sheet and begins to move forward to 40. tempTime.line can per-
form a similar end by writing to the position channel.

time.rate = time.rate/2 — a (temporary) slowdown in the rate of time propa-
gation that results in a permeant modification of duration. Finer control 
similar to tempTime: for example, time.rate = {to: time.rate/2, duration:5, 
weight:10, bias:1}. This is achieved by posting to the rate channel. Likewise, 
tempTime.rate.

Both time and tempTime are ideal for scrambling around in an improvisation, 
helping one construct and blend loops of time by executing one line statements 
by hand out of a pre-organized visual element's text editor. And, of course, there 
is nothing to stop visual elements from incorporating these statements inside 
their offered executable functions —  in fact, this is predominantly how the 
score-follower and the hand triggers from the performer are integrated with the 
flow of time through imagery for Jeux Deux. However, we can combine the 
above primitives to offer a more goal-directed manipulation of the flow of time 
through the sheet based on discrete triggering events.

 394



"is simplest, general-purpose interface to an event supported directly by Fluid 
looks like:

interface DeferSpecification {

 DeferSpecification begin(double time);
 double passed(double time);
 void end(double time);

}

begin(...) informs the specification that the are about to start listening; passed(...) 
queries whether (1) or not (<1) the event has taken place, and is monotonic — 
that is, once passed(...) a specification is never not passed(...); and end(...) informs 
the object that the caller is no longer willing to wait. Additionally, begin(...) has 
the opportunity to return the specification that will be used for subsequent 
passed(...) and end(...) calls. Consider the case of a next_floorwork event, that is 
passed(...) when all of the dancers simultaneously go to the ground. "is may 
happen more than once in a work — hence we register our interest in the next 
such event using begin(...). "is returns the object that we will query for 
passed(...) — allowing us to pass DeferSpecifications around globally, without 
passing around the means to create them afresh should we want some event's 
passing to remain local.

DeferSpecifications are composable using (fuzzy) boolean operators — specifi-
cations are commonly composed with an “or” operator with a time-out which 
limits how long a piece of code will wait. Inside the co-routine / resource 
framework we can bridge DeferSpecifications with standard co-routines by con-
verting an increasing passed(...) to progress, a constant passed(...) to continue, a 
passed(...) = 1 to stop and a violation of monotonicity as failure, page 140. "is 
bridge, of course, can be traversed in both directions.

DeferSpecifications allow the creation of higher-level time-manipulation primi-

For example, the basic set of fuzzy operations 
defined in :  K. Tanaka, An Introduction to Fuzzy 

Logic for Practical Applications, Springer, 1996.

 395



tives. Most simply, we might pause at the start of a visual element until a specifi-
cation has passed. It is most convenient  to revisit the return-value of a visual 
element with respect to a Runner and write:

r = (start_executable, continue_executable, end_executable)

r = defer_until(r, specification)

"e defer_* family of return-value decorators also understand 5-tuple as well as 
3-tuple r values:

r = (start_executable, while_waiting_executable, transition_executable, 
continue_executable, end_executable)

where the first is executed immediately, the second while the specification has 
not passed and the third as the transition from not-passed to passed.

More commonly used is a softer-pause:

r = defer_until(r, specification , fraction, smoothness, permanence)

this works the generic radial-basis channel structure a little harder, slowing 
down to arrive at a time that is “fraction” through this visual element when the 
specification becomes passed, but in any case never going beyond this fraction; 
the remaining parameters control the fading in and fading out of the window 
functions on the postings that achieve this, and how the control between per-
manent and temporary channels is partitioned out. Finally, we have:

r = defer_forever(r, specification)

that runs the underlying visual element should “specification” pass regardless of 
whether this visual element is still executing or not (in which case, it runs the 
“start-executable”, “continue-executable” and “end-executable” in three execution 
cycles).

 396

figure 150. A “graph selection” sheet. Time-markers 
can be local to particular visual elements —  here a 

marker is local to the area underneath a visual 
element. Deactivations and subsequent reactivations 
between markers are elided. Note the different, but 
still meaningful, interpretation of the visual layout 

in this sheet.

subgroup has 
"local" time markergraph manages its 

own execution

life-cycle of 
elements are 

correctly elided



Each of these mechanisms — the defer_* method “decorators” and the time and 
tempTime direct objects are manipulating the time-marker for the whole sheet — 
the shared generic radial-basis channels ensure that competing ideas as to what 
this time should be are blended and faded in and out. However, the impact of 
changing the time is shared throughout the sheet — there is only one time-
marker.

To allow two or more threads of action to drift in and out of sync in response 
to events would require the use of multiple sheets — which seems a less than 
perfect solution for it potentially deletes the spatial relationship (the “sync”) 
which grounds both visual layouts. However, within in the Diagram framework 
a better solution takes almost no effort to implement — we make the generic 
radial-basis channels for rate and time-position have context-local storage (for 
postings) where the context is given by the sheet grouping. Now we have an ad 
hoc but hierarchical structure in which to place postings, and whenever we ma-
nipulate the rate and position channels we get to choose at which level to place 
the posting — local to the visual element, local to any group that the visual ele-
ment is in, or “local” to the sheet (i.e. global).

At present the grouping visual elements make this choice for their children, by 
interposing a text preamble and post-amble to the code of their children that 
causes their access to the time and rate channels to be at the group level. All 
other access is, by default, at the sheet level. "is is the fundamental work that 
allows the reschedulable notations of the parachute / accumulation agents of how 
long..., the to-ing and fro-ing of forest fire and stage machine and the rhythmic 
traps of 22's scrubbing through video.

Now that we have the techniques required to fission and fuse time markers 
back together again, we can go further and build from time markers alternative 
ways of “executing” a sheet. "e most developed are the graph-based structures. 

 397



Inspired by the general usefulness of the pose-graph motor system and the task 
of creating a visualizer that allowed the visual assembly of pose-graphs from 
animation materials, we can create an executable graph structure using Fluid. 

Of course, creating a directed, cyclic graph of connected visual elements is al-
ready supported in Fluid, page 379, so there is little visual programming work 
that needs to be done. However, we can form a graph Runner, by extending the 
time-marker Runner. "is Runner moves through a graph structure and executes 
the contents of the visual elements that it encounters. "e visual element return 
value r structure remains similar — scalars, lists or dictionaries of functions, 
methods or Updateables — but is extended with a graph return value g which is 
a dictionary of attributes that informs the graph runner that is executing the 
code how to act. At present there are three keys in this dictionary:

duration — how long should this visual element execute for (in seconds); 
This value may be changed during the execution, but only when we get to 
the “end” of the visual element do the other keys become significant. dura-

tion controls the rate radial-basis channel in a two-level time-control simi-
lar to those used in time markers.

next — this refers to the visual element that we should go to next: it can be a 
visual element itself, the a name of an element or a regular expression over 
the name of the elements. It can also be the special elements _nowhere (to 
stop the runner completely), _top (refers to the spatially highest visual ele-
ment connected to this element), _bottom (likewise). next may also be a 
dictionary that maps any of these elements to floating point values, in 
which case it is used to create an un-normalized probability distribution 
which is sampled from to create the next visual element.

fork — an optional list of alternative “nexts” that causes the graph runner to 
fork a copy of itself. By default these copies do (unlike time markers) re-

 398



execute the visual elements that they encounter — that is, they do not 
share a common parent (see page 376).

Even without the forking paths and the probabilistic next selection this structure 
is enough to visually create a pose-graph motor system from coarse-grained 
animations. To more fully exploit the visual potential of Fluid, in particular in 
pose-graph like domains, we visualize the sweep of time across the graph visual 
element using a time-marker with a conventional runner, separate from the 
graph runner, local to the area beneath the visual element  and sharing a com-
mon parent with all of the other local time markers.

"is allows the visual creation not just of a pose-graph motor system, but of 
procedural processes on top of the pose-graph structure — that overlap, for 
example, with the beginnings and endings of animations. It is work for the fu-
ture to try these ideas on a representational character, but it is my suspicion 
that Fluid will compare favorably with the recent interest in graph-based ani-
mation editing engines.

With the forking runners and probabilistic next selection these extras it be-
comes possible to visually create, manipulate and improvise with the stochastic 
rhythmic cell generators of Loops Score and how long....

closing remarks

Fluid is a tool that has been made available to others. Indeed, if it were not for 
the urge to generalize before specifying that bore it, it would be a completely 
specific, personal tool. Nor does it, as a work of engineering, independent of the 
agent-toolkit (and its lower-level graphics rendering, sound systems and net-
work resources) offer anything sellable to the “non-programming” digital artist. 
Nor does it offer a segmentation of its structure into “modules” that are easily 

All three of the main modeling and animation packages now have some kind of 
transition graph based character animation editor: 

AliasWavefront’s, Maya — http://www.aw.com . Autodesk / Discreet, Character 
Studio — http://www.discreet.com. SoftImage’s XSI —

http://www.softimage.com/products/behavior/v2/default.asp

While these are innovations in their product domains, it is clear that the user 
interface is still catching up with the expressive power of even computer game 

industries, and little of the substantially more advanced motion editing 
algorithms of the last 5 years worth of Siggraph have made it into the products 

yet, nor have the interfaces for motion editing reaches the level of 
programmability taken for granted in other software domains.

 399



shared as currency between members of a “community”. It seems to have few of 
the attributes of Max’s social success.

However, while it does not compete with these tools, yet, I believe that part of 
its contribution is in that arena. "at Fluid’s database-like handling of its use-
history, its self reflexive monitoring capabilities, the way in which it enables the 
structuring of an environment to peer into the workings of a complex system, 
even the length to which it can stretch a dynamic language’s syntax toward terse 
domain specific tasks all have something to offer this domain, even in the ab-
sence of any widespread acceptance of the expressive need for text-based pro-
gramming. It seems that should Fluid be augmented with a more extensive, 
Python-based library fitting a problem domain shaped a little more traditionally 
it would be a short and productive matter to turn this environment into some-
thing that could be productively used by other people. It does share some of the 
hallmarks of a truly learnable environment — it is non-modal, it reveals its 
flexibility gradually, it is itself open to inspection; and it is certainly adaptable to 
areas smaller than manipulating a full blown agent toolkit. At the same time 
however there are some aspects that would need to be reconstructed or 
strengthened: the development of additional layers is something that ought to 
be achievable in Fluid directly, without recourse to the underlying toolkit; the 
version control system should be expanded to handle multiple simultaneous 
authorship on independent computers. In general Fluid could benefit from be-
ing re-architected in such a way that it can truly turned upon itself and made 
even more independent of the underlying toolkit. Yet in general, turning Fluid 
into a widely used tool is at least a less complex task than turning the agent 
toolkit into a widely used architecture and perhaps this will offer an intermedi-
ate point in the distribution of the engineering contributions of this thesis.  

But part of Fluid’s contribution might be to question whether this arena — the 
single available art tool — should continue to be structured as it has been. Fluid 

 400



would surely add more to the debate around the technical and conceptual bases 
for digital art making if there were in fact a debate raging.

With its acceptance of the expressive power of text-based programming, Fluid 
keeps company with what might be an emerging counter-trend toward the text-
based — as evidenced by the languages Processing / Drawing By Numbers / 
Supercollider. Yet at the same time as these environments reject the problems 
and half-solutions of visual programming, they also reject the entire visual inter-
face and run the danger of finding themselves ignorant of an emerging counter-
trend in textual programming languages — one towards multiple, semi-textual 
views onto a program. "ese art-making environments are all in danger as they 
grow of falling between the “professional” environments for large text-based 
programming projects — which have more support and manpower behind 
them — and the “easy-to-learn” visual environments. Fluid points toward a new 
class of hybrid environment and a path out of this rapidly shrinking space.

 401


