
This section takes us from the works that use the c5 agent-
toolkit to a new toolkit, called Diagram. It introduces the first 
artwork to exploit this framework — Loops Score, the music 
for Loops. Diagram is a loose and interacting set of extensions 
to c5 that are designed to ameliorate the apparently persistent 
problems that artists employing complex agents face. In the 
technical discussion that follows, I respond to my previous cri-
tique of c5 and its use in alphaWolf. Diagram is also the set of 
technologies that will lead to how long.... 

Chapter 6 — !e Diagram framework & Loops Score

In the previous description of the complex, multi-programmer project alpha-
Wolf, we discovered a number of inefficiencies in the way that it was assembled. 
While some of these problems may have stemmed from what one might call 
“impedance mismatches” between the components used to assemble alphaWolf, 
it seems more likely that the failings and weaknesses of this large assembly ideas 
from the c5 agent toolkit used for that work were more infrastructural than tied 
to any particular algorithm or representation. Both Loops and !e Music Crea-
tures dodged or postponed many of the issues identified — simply because of 
the size or goals of the agents involved, or the technologies deployed around 
their creation. 

For the two works for dance theater that close this thesis — how long... and 22 
— we had the great fortune of having two and a half years of notice before pre-
miering the works. I could have spent all of this time constructing new frag-
ments — new action-selection techniques, new classifiers for the perception 
system and new representations for pose-graph motor system. Instead I took 
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some time to consider how these fragments were being assembled and the “glue” 
systems that hold the other systems together.

 1.   Complex assemblages – the inversion (of the inversion) of control

#e scope of these “glue systems” is both a little broader that the influential “de-
sign patterns” of software engineering and substantially narrower than a com-
plete, integrated, academic AI system. Broader —for they are more concrete and 
more multiply instantiated than the abstract design pattern; Narrower — for 
they make no claim to be a complete or even partial solution to any particular 
AI world or problem domain by themselves. 

#e inability to draw a stable, hierarchical diagram of either control, instantia-
tion, execution ordering or signal flow has been seen before in both published 
descriptions of hypothetical AI systems and throughout software engineering. 
We have seen it, in miniature, in our analysis of the source files of alphaWolf, 
page 84; we have seen it in the odd inversion of motor-system outside the colony 
of Loops, page 101; and we have seen it in the ad hoc reinterpretations of the 
perception / action / motor decompositions of !e Music Creatures.

Indeed, historically, the very idea of the software agent has been motivated by 
the problem of creating heterogeneous assemblages of interdependent modules 
(agents) to solve complex tasks in complex domains— be they economies or 
soccer games. Here the autonomy of the agent aligns again with the tractability 
of the decomposition of the complex task into interacting parts. 

!e so called “gang-of-four” design patterns book — E. Gamma, 
R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of reusable 

object-oriented software. Addison-Wesley, 1995.

Primary texts on software engineering’s ideas concerning the 
“Inversion of Control” are hard to come by. An overview of a 

broad variety of “framework integration problems” can be found 
in: M. Mattsson, J. Bosch, M. E. Fayad, Framework integration 

problems, causes, solutions. Communications of the ACM, 42 (10). 
1999.

Online resources abound, however:

!e Apache project’s Excalibur project: 
http://excalibur.apache.org/

 the “HiveMind” project at Apache Jakarta: 
http://jakarta.apache.org/hivemind/ioc.html 

!e PicoContainer framework: http://www.picocontainer.org/

!e Spring framework: http://www.springframework.org/
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#e tendency here, in both micro- and macro- conceptions of the problem, is to 
simplify the interconnectivity between these modules (agents). Hallmarks of 
this trend are extremely diverse, but one might re-read blackboard systems, arti-
ficial biochemistries, and various instantiation languages for behavior systems as 
searches for a minimal but powerful “glue” for signal flow, execution control or 
system instantiation. Each, I believe, demonstrates in insistence on the expres-
sive role of the ubiquitous system diagram in AI’s “system paper”, with its com-
plex boxes and thin arrows, a desire for “modularity,” re-articulated repeatedly. 

Inside purer software engineering pursuits, similar problems and solutions are 
devised and re-devised. Most prevalent are the problems surrounding the in-
stantiation of complex assemblages, and there is a thread of solutions that are 
typically referred to as the “inversion of control” or more tersely, IoC.

Many IoC systems propose a separate instantiation language (typically XML) 
for all material that is written in some other language —  one programming 
technique for the boxes, another for the arrows. Still more IoC systems provide 
registry and retrieval mechanisms for objects to use in order to find the other 
objects that they ought to connect to — a central place for boxes to find their 
arrows.

#e goal in both cases is to decouple modules from each other, indeed, to keep 
modules modular, the boxes boxed-up and the arrows lightweight. #e dreams 
of the modular cure many of the things that were so hard to maintain during 
the development of alphaWolf — separation of effect, incremental “testability”, a 
late binding reconfigurability and the ability to reuse pieces of a work in the 
next.

IoC systems that use a separate configuration language, commit themselves to 
two positions. Firstly that the glue between systems is necessarily simpler than 

Blackboard architectures have a long history both inside and outside the agent. 
For a software engineering perspective: F. Buschmann, R. Meunier, H. Rohnert, P. 
Sommerlad, and M. Stal. Pattern-Oriented Software Architecture: A System Of Patterns. 

West Sussex, England: John Wiley & Sons Ltd., 1996. Inside the agent: B. 
Hayes-Roth, A Blackboard Architecture for Control, Artificial Intelligence, 1985.

Synthetic biochemical communication: S. Grand, D. Cliff, A. Malhotra, 
Creatures: artificial life autonomous software agents for home entertainment. Proceedings 

of the first international conference on Autonomous agents, ACM, 1997.

XML is a ubiquitous W3C committee 
standard — http://www.w3.org/XML/ 
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the systems being glued together — that the box is bigger than the arrow —, 
and that this gluing does not require or deserve the complexities of a “full 
strength” programming language nor the environments that accompany them 
— that the organization of arrows is simpler than the contents of the box. Sec-
ondly that this assemblage is separated both in time and (metaphorically) in 
space from the cores of the modules themselves — these systems talk of a “de-
sign time”, where the arrangement of modules is decided upon prior to execu-
tion, and a design space outside the modules. 

Indeed, IoC solutions in general fail to allow the inversion of their particular 
inversion of control — or, less rhetorically, they fail to be particularly sophisti-
cated about where the control (instantiation, execution or communication) ends 
up after it is taken away from the insides of the module. #ese systems are not 
failing their problem domain, but the challenges that they have been designed to 
face simply are not as complex as the architectural problems fundamental in 
making complex agents. #e idea, therefore, that a module might, during execu-
tion, long after instantiation, reorganize existing modules, construct some anew 
and partially delete some more, is at best a rather long way from traditional IoC 
systems’ point of departure. To deposit control into a central registry, a configu-
ration file or a set of instantiation descriptions, is a fundamental dilution of the 
power of a module in the system over the modular; and if our idea of the mod-
ule is our receptacle for our introspection, our reusability and our extensibility 
strategies, then this maneuver reinforces the problems of constructing complex 
assemblages of modules with complex life-cycles.

#is of course isn’t of much relevance for problems where the connections be-
tween modules are a simple affair and the modules themselves provide all of the 
power, but our agents are already dynamic and getting more so as we move from 
Loops to how long.... Perception systems grow, action systems grow, long-term 
authorship techniques cut across both, motor systems model what actions sys-
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tems do, action systems set one structure up only to develop another later. #us, 
artificial agents do not appear to be in the group of problems that allow the 
longer-term use of parallel instantiation languages. 

It is worth noting in passing that early in the work of the Synthetic Characters 
group just such an instantiation language was created and used (for the large-
scale installations Swamped!, 1997 and (void *) — a cast of characters, 1998). #is 
design, which was part of the Scoot framework, was ultimately superseded and 
replaced by the current ‘c’ series of agent toolkits for a number of reasons, not 
least of which are the arguments presented above. Finally, we note of course that 
these IoC strategies run parallel to, but are in general more sophisticated than, 
the virtual wire of environments for digital art — which embody the fantasy of 
the system diagram — but in all fields the tactics are the same.

It is common to refer to the instantiation phase of an IoC container system as 
the time when “dependency injection” occurs. #is is the time when connections 
between systems are forged, either pushed to modules from a central descrip-
tion of what the connections should be, or pulled by the modules from a central 
naming service. In the work that follows we reject the singular nature of the “de-
sign time” and look at structures that remain malleable across the life-cycle of 
the agent, and some structures across the life-cycle of the creation of the art-
work. 

#is project shares, indeed inherits, the broad tactical goal of IoC systems — to 
find a low number of powerful, tractable, indeed author-able, strategies for con-
trolling, assembling, and ordering the execution and communication of mod-
ules. But our approach here differ from previous IoC attempts in that it admits 
immediately that that “low number” may be in fact greater than one; that the 
control, assemblage and ordering of modules are intersecting but not identical 
problems; and that these issues necessarily breach attempts to contain them 

B. Blumberg, Swamped! Using plush toys to direct autonomous 
animated characters. Proceedings of SIGGRAPH 98: conference 

abstracts and applications., ACM Press, 1998.

B. Blumberg, (void*): A Cast of Characters. Proceedings of 
SIGGRAPH 99: conference abstracts and applications. ACM 

Press, 1999.
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within the confines of instantiation languages, of “design time” or any other place 
which is essentially outside modules organized.

Related to modern IoC systems is the current excitement surrounding Aspect-
Oriented programming. AoP, seeks to augment the module vocabulary of object 
oriented programming to include “concerns” that cut across several classes, in-
stances or methods. Like “mainstream” AoP we are interested in finding alterna-
tive connective relationships between modules and alternative authorship 
strategies for maintaining these relationships. And we will use some of the same 
techniques that AoP under Java uses — instantiation time, byte-code injection 
and, most recently, load-time annotations. Unlike AoP we are not looking for 
generic solutions, but rather very specific ones for the problems that arise while 
authoring agents.

 2.   !e Context-Tree, a new “working memory” for agents

In the initial description of the c5 toolkit we drew a diagram, a decomposition 
into perception, action and motor systems connected by a ubiquitous “working 
memory”.

#is “working memory” serves as a communication channel, a persistent black-
board where systems could write and read, post and receive messages to each 
other, while remaining relatively uncoupled. Earlier, I refused to draw real ar-
rows between these boxes — denying the implication that one particular thing 
flowed in a direction, coupled in a particular way or assumed control over any 
other. We can continue to refuse to draw arrows, but analyzing how separate 
concerns inside the agent-toolkit couple in these ways is, however, going to be an 
unavoidable aspect of taming complexities of large agents. In this section we 
develop a replacement for the simple blackboard-like working memory of c5, 
called the context tree. 

For an overview of Aspect-Oriented Programming issues, there is a special issue 
of the Communications of the ACM: T. Elrad, R. E. Filman, A. Bader, Aspect 

Oriented Programming : Introduction, Communications of the ACM, October 2001.

In spirit we are most influenced by the AspectJ project:
http://eclipse.org/aspectj
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#e context tree is a tree of execution contexts, or scopes, that loosely follows 
the execution of the complete code-base involved in a particular work. In its 
simplest deployment the context tree has the following properties:

• for any given moment during the execution cycle, there is a single special 
level of the tree (branch or root) that is the “current context”.

• each context has a name, and, optionally, any number of children.

• names are not unique throughout the tree, but are unique within a single 
group of children.

• each context has a parent, bar the top of the tree, the “root context”.

• the tree is typically, but not always, fully explored in each execution cycle. 

• the mapping from source-code line number to execution context is poten-
tially one-to-many: if a line of code is revisited during execution, it is not 
necessarily revisited in the same context. Context scope is thus a dynamic 
scope, rather than something that can be either statically or lexically deter-
mined.

• a context has any number of named elements, a mapping from name to ob-
ject reference, and these are separate from namespace of children contexts. 
Named elements can be looked up with respect to the current context, 
should no element be found, successive parent contexts are searched until 
this element, or key is found.

• navigation through the tree, and the creation and deletion of contexts, is 
explicit.

• the other parts of the context tree can be referenced and searched both rela-
tively and absolutely. #e context-tree has aspects of a runtime database.
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Clearly my context tree shares many similarities with dynamic scoping found, for 
example, in some dialects of Lisp or more recently Perl. However it differs from 
these implementations mainly through its explicitness — dynamic scope is not 
implicitly woven from the language in which the code is written, but rather ex-
plicitly navigated, named and used by code that, in this case, may be written in 
any number of languages. However, given the above description of the context 
tree, it should be clear that there really isn't very much complexity to it at all. An 
acceptable simple implementation of the context tree is simply a tree of named 
hash-maps. As we develop our use of the context tree, we will begin to weaken 
some of these assumptions: we shall see contexts with multiple parents, and 
language-level features for accessing and navigating the tree.

It's reasonably straightforward to see how to turn this tree into a solution for 
simple inversion of control problems. A creature needs a perception system, an 
action system and a motor system, and we have a particular instantiated percep-
tion system P, a particular action system A, and a particular motor system M; we 
make a creature-level context creature that contains the key-value bindings 
the-perception-system:P, the-action-system:A , and the-motor-system:M. We’d like to write 
this with as little fanfare as possible, in Java (with the “keys” statically imported 
from definition interfaces):

thePerceptionSystem.set(P);

myP = thePreceptionSystem.get();

and in Python (using a class specifically designed for context tree access):

c.thePerceptionSystem = P;

We’ll see an even more minimal interface to the context tree below, page 226. 
Typically, Keys like thePerceptionSystem are static, that is globally importable and 
accessible — they obtain that locality and module specificity not through the 

For information about dynamic scope in Perl 
— L. Wall, T. Christiansen, J. Orwant, 

Programming Perl, O’Reilly, 2000.

For an entry to the debate over Lisp’s (early) dynamic scoping: 
http://en.wikipedia.org/wiki/Scope_(programming)

context: creature

context: P context: A context: M

key: the-creature's-perception-system = P

key: the-creature's-action-system = A

key: the-creature's-motor-system = M

figure 58. !e creature context and its three child contexts P, A 
and M.

 197



class-hierarchy-like instance fields but through the context hierarchy. However, 
later we might see storage that is both instance and context local, page 204. In 
other cases we might pick some other hierarchy structure to present as a tree — 
in the graphical user interface discussed later, we consider the hierarchy of views 
as a “context-tree-like” tree, page 377. No matter, for having constructed this 
abstraction, we are free to choose the granularity and the tree to apply it to. For 
the purposes of this discussion we shall assume the most typical case, that there 
is a single, statically accessible context-tree shared by the entire runtime system.

Modules P, A, and M execute in their own, child contexts of creature. When the 
motor system M needs to find a reference to the action system it looks up the-
action-system in its own context; although there is no binding there, there is a 
binding in the parent context creature and action system A is returned. #e box 
thus finds its arrow. 

Simple as this example is, there are a few key results to note:

this is a weakly coupling assemblage — this action system is never stored as 
an module-level variable (for example, it is never stored as an instance 
variable for any particular object); it can always be obtained from the con-
text tree. The action system can change completely (to the point that the 
action system is actually a different object reference) without explicitly 
accessing or notifying any other system. For this to be useful to consumers 
of this information, context-tree lookup should be fast enough; this is eas-
ily achieved by a variety of caching mechanisms that turn a context tree 
search into a single hash-map lookup in most cases. For this to be useful 
to authors of systems there should be notification mechanisms that can 
provide hand-off between changing systems.
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context: creature

context: P context: A1 context: M

key: the-creature's-perception-system = P

key: the-creature's-action-system = A1

key: the-creature's-motor-system = M

context: A2

key: the-creature's-action-system = A2

figure 59. One  way of ensuring that M refers to A2 is to write the 
reference directly into M, locally overriding it for this part of the 

context tree. 



hierarchical context tree keys favorites

run visual elements upon 
breakpoint access

set breakpoint on XPath and 
regular context-tree expressions

figure 60. !e context tree becomes a place where we can focus the 
attention of custom debugging interfaces, to assist in the creation of 

agents. Shown here are the interfaces to the   context-tree visualizer and 
the context-tree “breakpoint” interface. Breakpoints, which run on 

context and key access, are stored with the agent, and can be executed 
without any graphical intervention. !us the boundary between 

“debugging” and “finished work” is blurred.
"breakpoints" set 
on context-tree 

access

full details, 
including stack-
trace,of context-

tree search 

grouped by search 
context, find 

context or value 

  DEBUGGING WITH THE CONTEXT TREE   
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the interconnect between modules is traceable — the first step of all inter-
module communication is a call to the context-tree interface. If we want 
code to monitor, reflect upon or perhaps even interpose itself between, the 
action system and M or the motor system and A, then the site of this inter-
cession is clear. The result of this is that we focus a monitoring and tool 
building effort on the context tree, and for our tools and for our own navi-
gations of the tree, we can exploit the hierarchy’s implicit “locality of ef-
fect”: changes (be they modifications or bugs) to a context affect only chil-
dren.

the modules remain mobile — the motor system can be executed inside a 
different context (for example a different creature) and its binding lookups 
from the point of view of M will change to reflect the new context. For this 
to be useful, it should be easy to cache and store a state that needs to be con-
text dependent as correctly context dependent. This is achieved by building 
higher-level container classes that are automatically backed by “context local 
storage” and by building language-level constructs that make, for example, 
“context locality” as easy to achieve as “instance locality” and “class locality” is 
in whatever object-oriented language that we have chosen, page 204.

#is concludes the introduction to the context tree — my candidate replace-
ment for an agent’s central blackboard, an alternative to the arrows in a system 
diagram. #e section that follows simply takes this structure and builds more 
useful structures on top of it. Compared to blackboard architecture, the context 
tree has more structure — a nest of searchable blackboards, an explicit and dy-
namic hierarchy of execution contexts that is tied to the execution of code. 
Compared to an “arrow” it has much less structure, a much less narrow focus; it 
provokes much weaker couplings between modules. #erefore the context tree, 
as proposed, is a more complex compromise between these two simple solu-
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tions. It sacrifices some of the apparent simplicities of either of these two posi-
tions, hopefully, in exchange for simplifying the real problems that come with 
their use.

 3.   !e uses of the context tree

However, in our two examples above, none of these decoupling “victories” are 
secure against all possible manipulations of the contents, execution cycles and 
the assemblies of P, A, and M. And the real power that the context tree has over 
a central registry is that its internal structure somehow reflects automatically the 
execution and use patterns of the model that refer back to it. We’ll need to see 
some more complex examples for this power to be obvious.

For example: what happens if there are two action systems to communicate with 
A1 and A2? Where does the second go? How does A2 get a share of the commu-
nication between A1 and M? Something similar to the well known Façade pat-
tern might be deployed to make two action systems appear as one to the motor 
system, but just as the façade pattern hides its presence from the caller, it hides 
its presence from our previously traceable interconnect; it is a “local trick” and 
doesn't necessarily place control and share responsibility for its hidden manipu-
lation in the right place. If we are going to perform such local maneuvers why 
have a central mechanism to begin with?

#e actual problem behind this is an insufficient inversion of control — the 
motor system and a specific action system remain too strongly coupled together 
even when they find each other through looking each other up in the context 
tree. Better to note that much communication between the two systems can be 
articulated inside the context tree itself, with the posting and querying of results 
or elements that can be used to obtain results. Our pattern shifts then: rather 
than have a reference to the-creature's-action-system at the creature level (which is 

!e Façade pattern is from: E. Gamma, 
R. Helm, R. Johnson, J. Vlissides, Design 

Patterns, Elements of reusable object-oriented 
software. Addison-Wesley, 1995.
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really the act to blame for our commitment to a single system at that level) we 
have our action system and motor system post results to and query information 
from the context tree — these results and queries are arbitrated by their own 
individual keys. Loose coupling can be achieved by using the context creature for 
this blackboard; results from both A1 and A2 are written here, in an execution 
dependent order. 

Asymmetrically strong couplings can be achieved and with them a variety of 
execution independence: 

A stronger, more detailed coupling, from Ax to M can be made by injecting a 
reference to Ax's context above M's context for use by M in looking up the 
results of Ax which are stored local to Ax — this coupling can be easily ar-
ranged by an assembly mechanism completely external to both Ax and M 
and independent of the ordering of A1 and A2; 

A local coupling from Ax to M can be constructed by injecting the results of 
A directly into M's context — here Ax must come to know something 
about the existence of M's context, but nothing of the specifics of M's itself. 
Again this is (A1,A2) order independent; or 

A private coupling by moving M to a sub-context of a particular Ax — this 
often makes Ax responsible for other aspects of M's life cycle including the 
ordering of Ax and M. 

#e context tree cannot make the decision as to which kind of coupling is more 
appropriate, but it does at least allow the decision to be made. And in each case, 
this serves the end of making the communication between modules more ex-
plicit, more standard (and thus observable by our generic context tree inspec-
tion tools) and, depending on how these results are described in code, poten-
tially more declarative. 
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context: creature

context: P context: A1

context: M

context: A2

figure 61.A strong coupling between A2 and M.

context: creature

context: P context: A1 context: A2
context: M

figure 62.A local coupling between A2 and M.

context: creature

context: P context: A1

context: A2

context: M

figure 63.A private coupling between A2 and M.



Looking back at the complexities illustrated in chapter 2 on the “large-agent” 
system alphaWolf, we see a number that could be directly treated by using the 
context tree as a general mechanism for coupling modules, and it is not difficult 
to hypothesize uses for each of the above couplings in this project. #e coupling 
diagrams of figure 15, page 79, tell three stories and hide three more. One is the 
sheer number of connections between disparate parts of code — which is in 
itself an argument for a strong and general purpose way of connecting things 
without boilerplate code. #e second is the increase of connection density as the 
project grew. As modules “split” (presumably for the purposes of localization 
and testing), they duplicate and drag with them all of the previous connections 
to systems and add usually at least two more connections between the newly 
created modules — observe “fight action” and “toodle action” appearing out of 
the main “action system”. #irdly as the project develops, modules that were 
general purpose become specialized, and in doing so, other modules assume 
specific knowledge of that specialization — the transformation from “percep-
tion system” to “wolf perception system”, and the leakage of this concrete imple-
mentation into other systems. Hidden here are the “modules” that are never cre-
ated because the coupling to their environment would be so strong, when ex-
pressed in method calls and shared instance variables, as to render the exercise 
futile. Equally hidden, and equally absent, are the “mock” objects that were diffi-
cult to create for the purposes of testing other modules in the presence of such 
detailed shared knowledge of the implementation of each module. [ref mock 
object] Finally, hidden on the diagram, since it is difficult to represent pictorially, 
are the careful aggregation and ordering of one modules results by another in 
order to present this information in turn to other modules — for example, the 
perception system bundling information from the proprioception system in 
order to pass it to parts of the action system.

#e context tree speaks to all of these problems. It offers a communicative com-
plexity that scales with the number of modules, not the number of connections. 
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It offers the potential of the utterly “code-free” fission of a module since the abil-
ity to find and connect to modules is stored outside the module being fissioned. 
We shall see that the context-tree offers module-external methods of shielding 
the implementation details of a module from others; an more detailed, yet po-
tentially safer coupling that decreases the the threshold for modularity; and, as 
illustrated above, a module-external place where code can aggregate and treat 
the output of several modules before passing them up or along the context-tree 
for the consumption of other modules.

However, in a more general sense, we have only begun the process of decoupling 
the modules of the agent — and we have simply deferred the problem rather 
than solved it if disparate parts of our hypothetical systems A or M need know 
about the specifics of the coupling arrangement — if special code need be writ-
ten to implement these different classes of couplings. Rather, it should make no 
difference to the insides of the modules to access a variable in each of these cou-
pling scenarios. It is to the decoupling of this decoupling that we turn next.

Context-tree container classes

Clearly we are presenting the idea that we can have a language-level binding that 
appears to be a something like a “regular variable” (for example, in java an in-
stance member of some kind of reference type, in python a class attribute). 

 204



For example, in our most plain java we can define a context-tree key class with 
the following interface: 

interface Key<t_value>{

// looks up the binding for this key from the context tree

 t_value get();

// sets this binding to be this value

 void set(t_value value);
}

#is is the interface used for our previous examples. 

In certain circumstances is possible to hide the presence of even this single level 
of indirection in Java, and in languages that are more directly malleable, such as 
Python, these meta-class level manipulations have been explicitly built in to the 
language. No matter, for even with this shim we can construct higher level data-
structures where the references to objects have been replaced by these context-
tree bindings.

For example we can take the canonical linked-list structure and translate the 
next, previous, and object references (together with the head references) to unique 
context-tree bindings. #is gives us a list container class that at each level of the 
context tree acts as a list just inherits the semantics of the hierarchical context 
tree lookup. In particular, changes to the list in parent contexts are visible in all 
children contexts while the opposite is never the case. #is holds both for non-
structural (changes of what a particular list element refers to) and structural 
alterations of the list (deletions and additions to the list); when structural 
modifications present at parents and children overlap, then the list appears to  
follow the principle that the child context overrules the parent context for the 
purposes of that child context. 

next

previous

ref

first

last

next

previous

ref
. . . 

next

previous

ref

A B GCDEF

figure 64. !e canonical linked list structure is an open network of 
references.  We can replace the references with context-tree lookups to 

yield a context-tree-aware container class.

next next
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Similarly, “automatic” translation from instance-local to context-and-instance-
local data-structures is trivial in the case of the (hash)map and the binary-tree, 
and thus is able to re-express the complete set of primary interfaces of the Java 
“collections framework”. #ese context-tree-local container classes are then 
stored as conventional instance or class members, the further level of indirection 
afforded by storing these indirectly seldom being useful.

Programming in the interstices — code injection

#ese higher-level context storage containers allow the bootstrapping of yet 
higher-level programming techniques. When asked for its value, our context-
key local class asks the context tree for the value of a binding and returns it. 
When used as a blackboard for the posting and retrieval of results, this is a site 
of communication between one module and another, and, as such, it is also a 
site of coupling of a different sort — one connected to systems’ expectations of 
the semantics (what it means) of their communication rather than the syntax 
(where it is). We’ll begin with a toy problem, although as we will see below this 
example occurred a great number of times during these multi-year projects, po-
tentially threatening the very collaboration that was taking place. 

!e Java Collections framework is a 
standard toolkit of container classes — 

for a tutorial see: 

http://java.sun.com/docs/books/tutorial/collections/  206
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figure 65. !e context-tree list 
extends the semantics of the 

context tree to a list container. 
Here elements stored in all 

parent contexts are visible in all 
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that level and all levels below.



A posts a value A's result:4.0 to the context tree and B looks for A's result as an im-
portant input. But the code for B was written a long, long time ago, and we’ve 
just compiled it again and mixed it into the agent in a hurry; A has been com-
pletely rewritten since then, and the scale of A's result has changed — how can 
we make it appear to B that A's units are twice as big? 

One way to achieve the re-scaling is to execute code after A's posting but prior 
to B's reading that either rewrites the binding or injects a new binding into a 
context more local to B. #ese are clearly clumsy solutions, and neither of these 
solutions work well in practice. #ey introduce order-dependence where none 
previously existed and they interact poorly with a module C that is also inter-
ested in A's result.

A more interesting and maintainable technique is to open up the indirection 
provided by the context-tree key to the context tree itself.

Our key now looks like:

interface Key<t_value>{

 t_value get();
 void set(t_value value);

➡ void addToLookupStack(CodeElement<t_value> element);

}

where our CodeElement interface :

interface CodeElement<t_value>{

 t_value open(t_value filter);
 t_value close(t_value filter);
}
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we can now restate key's get behavior in terms of this filtering stack, in Python-
like pseudo-code:

returnValue = nothing;

for element in codeElements:
 returnValue = element.open(returnValue)

for element in reverse(codeElement):

 returnValue = element.close(returnValue)

return returnValue

Keys come with a CodeElement that heads their stack that just looks the key up 
from the context tree as usual. And of course, we can write a CodeElement that 
has an close() that performs the unit correction between B and A in a matter of a 
few lines. Maintaining two methods open() and close() allow filters to choose to 
pre-empt the main lookup. #ese CodeElement fragments are completely inde-
pendent and potentially persistable.

#e final twist is to make this stack of CodeElements a context-tree-local linked 
list. With this we can add our re-scaling code element to the list inside B's con-
text and inside B’s context alone. From within this context it is part of the stack 
executed to get at A's result and it gets its opportunity to modify the value passed 
through it accordingly; from outside this context it is not part of the list. 

We are now in a position to begin to see the relationship between the context 
tree and inversion of control container systems. Comparing these context-tree 
extensible, context-tree lookup's to conventional IoC’s push or pull “dependency 
injection” — the connection of instantiated modules — we might be tempted to 
claim the term “code injection” for the more aspect-oriented context-tree system. 
For here it isn't (just) the references that are getting hooked up through the 
context tree, but the semantics of the actual reference types offered by the un-
derlying language that are being subtly stretched from outside the module of 
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small amounts of code. #is is neither strictly “pull” or “push” — these injections 
may come from other modules, typically parent modules, and one module’s “cen-
tral naming service” is another module’s peer or child.

My context tree provides two other interstitial sites that are worth mentioning 
— watches and traps. Watches aid in the creation of context-tree debugging 
tools and allow code to be executed whenever slots in the context tree change. It 
is possible to implement this feature with zero additional cost in the case that 
there are no watches at or above a particular context, and this feature is designed 
mainly for debugging rather than self-monitoring. Traps, on the other hand, are 
called whenever contexts are entered, exited, re-parented, have children added 
to them, or deleted and are useful in maintaining caches of information (that 
may need to be updated if the topology of the context tree changes) or provid-
ing hooks for controlled shutdown in the case of context deletion. Later, I shall 
introduce structures that require this kind of caching in order to achieve good 
speeds at runtime, and we shall see some uses of the context tree for life cycle 
management in general, page 215.

Storing parts of the context tree — the technical support for naming

I’ve presented the context tree as a general purpose “working memory” for agents 
— a place where systems can post and read information and thus communicate 
in a loosely coupled fashion. #is is an accurate description for its use in the 
agents in !e Music Creatures, Weather for an interactive window, Max, 22, how 
long... and Imagery for Jeux Deux and all other agents within the most recent 
versions of the c5 toolkit. However, the context tree began life as a solution to a 
slightly different problem — not as a substrate for communication between 
processes but as a place for communication between artist and agent during the 
creative process.
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#e hierarchical outline of the tree makes it ideal for configuring rendering pa-
rameters broadly, before stepping down a few levels of the tree for local control 
over a specific agent, a specific shape or a specific line. And being able to distrib-
ute code throughout the interstices of the rendering is of course extremely pow-
erful — for example, this makes it easy to programmatically distribute variety — 
of rendering styles, or behavior, page 98. 

#is technique works so well that I invested much time in creating graphical 
and textural interfaces for the context tree to set, inspect and manipulate these 
values and injected code. #e context tree, with its structure dynamically deter-
mined by the execution of the agent, is its own “ideal interface” for distributing 
parameters. Creating Loops and !e Music Creatures was just as much a matter 
of traversing the context tree of the colony and manipulating parameters as it 
was of storing them, learning them and recalling them, page 98. 

#e filtration example above was presented as a toy example — and it certainly 
does look like a lot of trouble to go to just to multiply a number by two. How-
ever, this very problem appears frequently in practice. #e context tree's scoped 
accessibility makes it an ideal place to put the large number of ad hoc parameters 
that get set and reset during the creation of an art work — be they line thick-
nesses, colors, noise parameters, filter coefficients. how long... moves around at 
least two hundred of these at various locations of the context tree, and almost 
everything that isn’t specified in the action system in Loops is specified by these 
numbers — in the motor system, the graphics system and the global control of 
the colony. 

However, there is a problem with storing these values. #e resulting parameters 
aren't just numbers — they have been hard fought for and hard won; they 
might represent a considerable effort to tune the appearance of a line — e.g. 
Loops — there might have been a considerable amount of offline learning in-
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volved on the value of a coefficient — e.g. Music Creatures — they might repre-
sent a considerable amount of consensus inside a collaborative work as to what 
a particular appearance should be, last month or even last year — e.g. how long.... 
Such is their importance in the development, one clearly needs a strategy for 
storing them past the life-cycle of a single execution of the work and past the 
memory span surrounding a rehearsal or an improvisation. 

#is storage of these parts of the context tree itself appears to be easily achiev-
able by taking contexts and writing them to disk, and indeed this tree-like struc-
ture serializes to and from human-readable Xml extremely well. But these per-
sistent numbers are not built from stable material, they are not referentially sta-
ble: line thicknesses are being developed at the same as the line drawer which 
today uses a selection of multiple lines rather than the simple one it did last 
week (Loops); a new agent wants to reuse the same rendering styles, on different 
geometry (!e Music Creatures); learnt filter coefficients for one body now have 
to be translated into a new smoothing coefficients for a completely different 
body that as of last month hangs upside down — (how long...). 

Where there is a storage problem there is a versioning problem waiting to happen: 
these numbers are not loaded back into the same system that saved them, and 
the effort devoted into finding these parameters cannot be allowed to slowly 
halt the further development of the system. If it could, we would be faced with 
choosing from two frustrating inertias — a forward inertia that would discour-
age us from changing the process, having made the choice; and a backward inertia 
that would discourage us from making the choice, until the process is “finalized”. 
Both cripple the exploration of the field of potential developed by our complex 
systems just at the time when that potential might solidify into the particular; 
both threaten the collaborations that I have been involved in at, arguably its 
weakest place, my ability to regenerate material that was previously the subject 
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of consensus early in the collaboration, despite the provisional nature of the 
systems generating it.

Having realized the significance of the problem, the solution turns on two in-
gredients added to our context-tree techniques. #e first is a database that acts 
as a repository for named, subsets of keys take from branches of the context-
tree — we'll call these subsets persisted, partial trees. #ese partial trees are 
stored with versioning information that exists, crucially, on two levels: at the 
level of the partial tree, and at the level of the individual key. Named partial 
trees are additionally arranged in this “database” into types: parameters for our 
line renderer would be a type; a variety of named partial trees, each with differ-
ent names, would form a set of rendering styles that we are interested in deploy-
ing throughout the piece; and a set of partial trees of the same name might be 
an ordered history of how this particular rendering style has been modified dur-
ing the development of the piece. 

Particular dates can be identified with names inside the database — “before the 
January rehearsal” or “before line renderer 2 got fixed”. Historical information 
about a particular key is never deleted, merely superseded; databases for the 
works presented in this thesis, some of which were constructed over a period of 
2 years, reach a size of several megabytes. #is size is perfectly manageable 
without recourse to more heavyweight, truly “database” back ends.
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#e second ingredient is a set of code resources that can first recognize when a 
key or a partial tree is “out of date” with respect to the current system and sec-
ondly do something about it. Version recognizers and “reversioners” can work in 
parallel and in series at both the partial tree and the individual key level. Neither 
recognizers nor reversioners can be made completely automatically, for the space 
of incompatible system changes resists standardization, but they can be made 
easily specifiable. 

Version recognizers are generally quite simple, in most cases recognizing a spe-
cific date tag isn’t the latest, or a particular key is missing from a persisted 
partial-tree. Reversioners generally act not by rewriting keys or adding previ-
ously missing keys but by injecting code into the keys or injecting code into new 
keys that tie their value to existing ones. #e accumulated injected code allows 
old systems (or, more likely, old snippets of scripting code) talk the “old lan-
guage” of the older keys while automatically presenting the newer interface to 
any module that cares. 

Version recognizers are arranged and stored as vertices in a directed graph 
structure, with particular reversioners as edges of the graph, a path of accumula-
tive “reversioning” is computed through directed search from the most recent 
(by date) version found from the database to the most recent (by date) version 
accessible to it in the graph. Should a reversioner R1→2  that moves versions 

recognized by V1  to those recognized by V2  fail to turn a partial tree that is 
recognized as V1  into a partial tree recognized by V2  back-tracking occurs.

missing default l_thickness_2

version recognizers

version

between Jan 5 and broken line

version

add l_thickness_2=5
reversioners

end of Jul residency

version

add line program

figure 66. Reversioners and version recognizers work 
together to ensure that persisted, partial trees are made 

up to date upon recall.  213



#is “versioner graph” was successfully deployed in the pieces how long..., 22, 
Lifelike and in !e Music Creatures and an earlier prototype of the system was 
developed for Loops and Weather for an interactive window. #ree of these five 
pieces were collaborations, two took place over a period of two and a half years. 
#e version graphs for each of these dance pieces contained on the order of tens 
of nodes, some general, but some quite specific. In Loops and sometimes in !e 
Music Creatures these partial trees are the very material from which the lowest-
level representation of the generic pose-graph motor systems deployed in that 
work — these named “rendering styles” were in fact the named “body configura-
tions” of the agents of Loops. 

#at the majority of these parameters were directly or indirectly related to ren-
dering styles or body configurations probably stems from the the fact that these 
parameters are both the most readily placed as stored numbers or injected code 
and are the most likely site of tuning-while-running during a collaboration. 
However, it is also true that the results of offline and ongoing learning processes 
were stored and versioned in these persistence structures for maintenance across 
time-scales longer than the typical duration of the piece. Returning, once again, 
to alphaWolf, we can hypothesizes uses for these techniques not just in tuning, 
say, the rendering parameters for the wolfs, but rather in changing the way in 
which agents themselves were created. #e partial storage of the context-tree, 
ought to have provided a mechanism by which particular arrangements of the 
social learning of the wolf-pups that were proving problematic to debug could 
be stored and recalled independent of the ongoing development of the social 
learning mechanisms. #e ability to quickly return, in the presence of structural 
changes, to the debugging “frontier” would have greatly assisted the tuning of 
the social “game dynamics” of the piece.

Looking back to !e Music Creatures, page 127, and forward to a more general-
purpose expression of this idea, page 390, this is neither the first or the last per-

Indeed the small work, Weather for an 
interactive window, was mainly concerned 

with testing interfaces for live 
experimentation of rendering styles 

right up until minutes before the 
opening of the installation. 

Although Loops exploited the context 
tree for its parameter distribution, it 
lacked a re-versioning graph system.

 214



sistence database that this thesis will discuss, and the theme of directly treating 
the historical development of a piece with custom tools continues: techniques 
that face up to responsibilities and consequences of long-term collaboration and 
thwart the encroachment of these choice / process inertias often developed 
when complex processes and artistic choice collide.

Authoring systems that change over time — the inverted context-tree list

#e problems of constructing complex assemblages of interacting modules has 
motivated many of the interstitial techniques developed here. However, the 
problem of dismantling parts of these complex assemblages appears to be fun-
damentally even harder than constructing them in the first place. To see why 
this is the case, we should look back at the kinds of situations that appeared 
often in alphaWolf, where a great many systems were instantiated, registered 
and accreted.

Firstly we note that construction follows the execution of the code, but there is 
no closure around this or any construction in this object-oriented / imperative 
language. Each of those objects might wire themselves together and make more 
objects that keep references to others. #is is easily written in an imperative 
style, and straightforward to execute assuming one has gotten the order correct, 
but the execution itself leaves no trace — it is possible and perhaps likely that 
these newly constructed, installed and registered objects don't have references 
to the objects that made them, installed them or maintain them as registered. 
Even if they do it's not clear that it is desirable for them to have the knowledge 
or the power to unmake, uninstall or de-register themselves. Such knowledge 
and access would represent a strong and, worse, diffuse and intricate coupling 
between disparate sub-parts. 

// Sensory and proprioception System
pps = new ProprioceptionSystem("wolf proprioception", wm);
//ss = new WolfSensorySystem("Wolf's Sensory System", this, pps, Math.PI*2, Double.POSITIVE_INFINITY , false);//Math.PI/4.0, 200);
ss = new WolfSensorySystem("Wolf's Sensory System", this, pps,
                            AlphaWolfInstallation.visibilityAngle,
                            AlphaWolfInstallation.visibilityDistance,
                            AlphaWolfInstallation.smellRadius,
                            AlphaWolfInstallation.use_eye_state_to_filter);
this.setSensorySystem(ss);
this.setProprioceptionSystem(pps);

// Perception System
ps = new WolfPerceptionSystem("Wolf's Perception System", ss, wm, this);
setPerceptionSystem(ps);
      
wm.installPerceptionSystem(ps);
        
cSEMSystem = new CSEMSystem(this.getName()+": CSEMSystem");
    
// Action System
//if (this.getName().equals("pup"))
das = installActionSystem(wm,ps, wolfNumber, cSEMSystem);

    
// Navigation System
//createAndInstallNavigationSystem("Duncan's Navigation System", LocationPercept.BODYLOCATION, wm);
createAndInstallNavigationSystem("Duncan's Navigation System", LocationPercept.BODYLOCATION, wm, ps);

figure 67. A great many systems created and registered. 
!e act of registering leaves a distributed, intricate trace 

that is hard to unravel.
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Further complexity flows from the need to propagate a description of what is 
and what is not being torn down through the method calls doing the disassem-
bly, it is not clear that this can this even be described without coupling the mi-
nutia of an assemblage to an external description of its boundaries. But we al-
ready have seen one description of the boundaries of a assemblage that doesn't 
need to be propagated anywhere — a branch of the context tree — and we have 
seen one species of container class that automatically reflects the state of the 
context tree. Perhaps these two ideas can be combined to make structural addi-
tions and deletions to the context tree equivalent to structural registrations and 
de-registrations.  

Consider a new kind of list structure — the inverted context-tree list. Like our 
earlier linked list backed with context-local storage, its contents are actually dis-
tributed throughout the context tree, rather than stored in a particular instance 
or class field; and just like the our previous linked this this list is in actual fact a 
union of lists stored in a number of contexts. However, where the context-tree 
list was the union of all lists at the current context and its chain of parents, this 
inverted list is the union of all lists at the current context and all of its children. 
Unlike the previous linked list structure we cannot construct this list by replac-
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list = ABCDEFGHI

list = ABC
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2. list.insert(2, "X")

1. list.insert(4, "Z")

list = GHIX

list = ABCDZEFGHIX

list = ABC
list = DEF

figure 68.  !e  inverted context tree list 
appears to have the contents of a context 

and all children (as opposed to all parents).



ing object-references with context-tree key lookups, for context-tree key lookups 
proceed, in the absence of code injection, upward through the tree. However, in 
practice we certainly can reuse the same caching mechanisms that make access 
to the context tree fast to maintain this inverted list of lists at each level of the 
tree.

#is list is now a primitive from which we can construct registration lists, exe-
cution orders and notification queues. Whenever there is a list of objects that 
need updating or notified when events occur, this list should be an inverted 
context-tree list; whenever there is a map of known services that might be called 
upon by a module, this map should be an inverted context-tree map. Delete part 
of the context tree, and all references to objects installed at that level and below 
disappear; execute methods on this module in a different part of the context 
tree, and a different set of objects to update or services are available. Further, 
upon deletion, the references disappear in a particularly orderly and consistent 
fashion: namely, simultaneously. And this simultaneous destruction occurs at a 
particular moment: at the last transition out of the deleted context they are 
never seen again. #is is a time when, by definition, there is no code running 
that accesses these data-structures. Together with a few “language level” pro-
gramming tricks, this facility can be made broadly usable, removing much of the 
boilerplate code that is involved in both de-registering and even registering sys-
tems’ connections, page 231.

#is idea, as already described, is very useful beyond simply enabling the disas-
sembly of systems — indeed it permits the rapid assembly of the kinds of com-
plex assemblages that the context-tree promotes from going unexploited in sys-
tems that need to delete parts of themselves during their execution. Often in the 
face of creating an agent or an artwork, the focus is on assembling something, 
testing it, tuning it; having reached a point of confidence that that thing is head-
ing the in right direction, one puts this piece down and takes up another part of 
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the work. Only when these pieces come together do their life-cycles begin to get 
complicated: when we need to go from one piece to another, incorporate one in 
another, instantiate three things rather than one. 

By no means, however, is this kind of tear-down essential to the creation of 
graphical, interactive agents — the installations Loops, Dobie, alphaWolf, !e 
Music Creatures, Lifelike all ran without any structural deletion occurring during 
their life-cycles. Similarly, most interactive works — be they authored in Max, 
Isadora, Director, or Flash — seldom change structurally much after initializa-
tion time — data flows through pre-made networks of modules, pre-loaded 
resources are moved to the fore or hidden.

However, in each of my early works, the problems of structural deletion made 
their presence felt — Loops became an infinite piece about the finite materials 
from which it was constructed; Dobie learns without bound, without forgetting; 
alphaWolf faced difficulties of such magnitude loading and deleting its constitu-
ent wolves that after their five minute growth cycle they were swapped around 
rather than deleted and reinitialized. As I moved to agents with more complex 
parts, their lives, and the simulations they inhabit, grow shorter: !e Music 
Creatures only lived for around 7 minutes before dying — and with their accu-
mulation of models and graphical material they might not have made it much 
past a few hours if left to run; and Lifelike ran for the duration of a 30-minute 
dance work, but the accumulative flux of points, lines, graphical resources, and 
behavior systems was so great I fear it would not make it past an hour. Is this 
the necessary price for live structural change?

Instead, these works (and commercial interactive programming environments) 
find a solution space (or a duration) where they do not have to confront the 
issues that come with tearing down previously constructed systems that may 

!ese environments will be the subject of 
much discussion in chapter 8 — see the 

references therein.
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have changed structurally; but at the same time, we are clearly interested in 
works that do change structurally and remain running over long time-scales. 

So the above techniques, the context tree and the containers, enable how long... 
to have a parade of overlapping, interactive agents that come and go, that model 
and stop modeling, that add and subtract geometry. As an artwork there is no 
secret reason why it could not run indefinitely. If it were appropriate, we could 
loosen the scripting of the entrances and exits of agents to create an endless 
chance juxtapositions of bodies and perception systems. Perhaps this flexibility 
will be demonstrated an installation context at some future point. Regardless, 
the flexibility paid for itself in rehearsal.

#erefore, together the context tree and its container classes allow for the as-
sembly and automatic disassembly of modules. However, there is an alternative 
interpretation of this power that has implications squarely in the domain of 
artificial intelligence, not simply software engineering. Since the addition and 
deletion of things are tied to the context tree and since contexts nest we can use 
context-trees to implement structural closures. #at is, we can open a child con-
text, try some computation and, if we don't like the results just delete the con-
text and it is as if nothing happened. If we do like the results, we need to propa-
gate the contents of that child context up to the parent — overwriting slots that 
contain simple values, merging slots that contain lists etc. #is kind of specula-
tive execution allows systems to hypothesize about what would happen if it 
changed in a certain way. Unlike languages with built-in support for closures it 
is up to the programmer to decide what is and what isn't closed in. #is is a 
problem since it is prone to error unless using context-tree-local storage is sim-
ple (see the annotation library, page 226), but it is a benefit because it allows us 
to choose what does and what doesn't get rolled back on this context-tree-level 
“undo”. #is technique has a number of in the works: !e Music Creatures used 
an early version of this technique to speculatively close a sensitive period that 
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might in fact need to open again; Loops Score uses it in a number of places to see 
if performing a musical action will produce a series of notes that can be related 
in some way to what has already been scheduled, page 235. I expect that this 
technique will find an increasing role in future agents that undergo long execu-
tion, long-term structural change.

Further, such a facility — had it been offered by the toolkit during at that time 
— would have radically changed how projects such as alphaWolf were authored. 
Not only would it have been possible to unravel the kinds of structures indi-
cated in figure 67, but this error-prone glue code itself would disappear. By pre-
serving the modularity of parts of the agents one could also prevent the unfor-
tunate collapse of all three “kinds” of agents (pup, adult and caretaker) into a 
single action system — allowing the set of action tuples present in the system to 
grow and change during the life-cycle of the creature rather than creating a sin-
gle action system with parts “shorted-out”. #is offers an improvement not just 
of computational complexity of running the action systems (which, in itself is 
dwarfed by the graphics and animation tasks) but of the complexity of debug-
ging these systems, visualizing their execution, even just thinking-through the 
results of modifying the source code (see, for example, the number of “optional 
sections” in the alphaWolf behavior code in figure 69, page 222). Further, a real 
deployment of the context-tree as a universal coupling between parts of an al-
phaWolf creature may have permitted modular testing, in particular the profil-
ing and creation of the perception system and motor system independent of the 
action system, allowing in turn the multiple programming collaborators on that 
project to work more independently (directly treating the problems illustrated 
in figure 15, page 79).
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"e context-tree and system creation — sub-classable complex systems

#e above sections have considered the context-tree-based solutions to the 
problems of constructing, manipulating, and disassembling complex assem-
blages of interacting “modules”. #is last section addresses the related problem 
of re-using them.

Often in object-oriented programming languages one expects to be able to use 
inheritance to provide a set of good base classes that will speed the implementa-
tion of, and reduce the amount of code required for, common specific classes. In 
an agent toolkit one expects to be able to create a simple agent in code by per-
haps overriding a few methods from a base class that aggregates the machinery 
required for a graphical agent, an agent with a motor system, a perception sys-
tem and an action system etc. Unfortunately, in practice, building a toolkit that 
offered such a super-class template has proved to be extremely difficult, and 
throughout the collaborative development of the ‘c’ series of agent toolkits, there 
has been an ongoing tension between powerful “abstractions” and useful “base-
classes” . Here a apparently irreconcilable tension appears: between concretizing 
all-too-abstract elements in order to make specific agents, or abstracting all-too-
concrete previous works to make the next. AlphaWolf falls, in my opinion, 
squarely inside the hole between these two poles — little of the code piece gets 
reused in the works that follow, yet the generic nature of some of the elements 
used in its creation can do little to prevent the growth of the behavior system 
files.

In this quandary, nothing less than one’s technical development as an artist is at 
stake — the tension is between maintaining a broad ranging set of elements 
that are difficult to turn into free-standing artworks, versus accumulating 
knowledge and experience, but no tangible tools or code.
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Let us look at this complex “sub-classing” problem in detail. Perhaps the prob-
lem stems from the number of options that this super-class aggregation needs to 
present to its possible sub-classes. Rather than reducing possibilities as we de-
scend down the inheritance chain to get closer to specific uses of the agent 
toolkit, the opposite happens: flexibility increases exponentially as we aggregate 
systems that are suffering from the same problem. So, unless there exists a 
mechanism for distributing defaults and overrides amongst these systems, either 
inopportune choices are made and the inheritance hierarchy is abandoned, or 
the base-classes provide so broad a base that they are hard to understand. 

So far we have tried hard to allow the creation of complex assemblages that do 
not couple to their connections — essentially, their “parameters”. #e context 
tree defuses some of these tensions. We can have constructors for these aggre-
gating classes that are written in a normal fashion — passing through, incorpo-
rating and storing parameters — as well as mutators that are coded almost as 
normal; all using the context tree. However, these classes do still couple in a 
number of ways to the classes that they instantiate. #is instantiation is one 
way that super-classes commit to limiting the options for their potential future 
sub-classes and if this instantiation cannot be defaulted and overridden then we 
are very much in the situation outlined above. 

#e standard design pattern used to avoid this in practice is another inversion-
of-control technique: the well known factory pattern. #e factory pattern inter-
poses logic in the name resolution and construction of classes. Rather than ask-
ing the language for a new instance of a specific class, one asks the factory for a 
new instance of a particular interface. #is factory decides on what class should 
be instantiated and with what parameters. #ere are two problems associated 
with trying to deploy the factory pattern widely: providing enough information 
to the factory for that decision to take place and providing those parameters 
once that decision has occurred.
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public Wolf(int wolfNumber)

{

//String name, String filename, World theWorld, boolean isReceiver, String audioName, ColorDataRecord color, String textureName) {

super(AlphaWolfInstallation.getWolfName(wolfNumber), AlphaWolfInstallation.getWolfGeometryFile(wolfNumber), 

    null, "B_root_node", "B_head"); 

        World theWorld = World.getWorld();

theWorld.add(this);

this.wolfNumber = wolfNumber;

/*

happinessSlider = new UtilitySlider("this is my happiness", 0, 1000, 0);

ageSlider = new UtilitySlider("this is my age", 0, 1000, 0);

bearingSlider = new UtilitySlider("bearing slider",-1000, 1000, 0);

*/

this.pupShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_PUP,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

this.alphaShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_ALPHA,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

this.betaShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_BETA,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

this.auntShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_AUNT,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

//this.audioName = (wolfNumber%3 < AlphaWolfInstallation.getNumAudioIns()) ? (AlphaWolfInstallation.getAudioName(wolfNumber)) : ("unused");

//put this in its own function so that the receiver's can use the same shader set up.

String texture = AlphaWolfInstallation.getWolfTextureName(wolfNumber);

setUpShading(this, texture);

Geometry geomL = this.getGeometry("skin_L_eye_lid_geometry_0");

Material matL = geomL.getMaterial();

Geometry geomR = this.getGeometry("skin_R_eye_lid_geometry_0");

Material matR = geomR.getMaterial();

if(matL==null || matR == null){

    throw new IllegalArgumentException("material for eyelids is null");   

}

double[] result = new double[3];

((MagicGeometry.GeometryMaterial)matR).getAmbientColor(result);

//System.out.println(result[0] + " " + result[1] + " " + result[2]);

/*

if(texture.indexOf("gray")!= -1){

    matR.setAmbientColor(0.437255, 0.433333, 0.413726);

    matL.setAmbientColor(0.437255, 0.433333, 0.413726);

}

else if(texture.indexOf("dark")!= -1){

    matR.setAmbientColor(.225,.225, .225);

    matL.setAmbientColor(.225,.225, .225);

}

else if(texture.indexOf("light")!= -1){

    matL.setAmbientColor(.6,.6,.6);

    matR.setAmbientColor(.6,.6,.6);

}

else{

    throw new IllegalArgumentException("what color shoudl the eye lids be?");

}

*/

((MagicGeometry.GeometryMaterial)matR).getAmbientColor(result);

//System.out.println(result[0] + " " + result[1] + " " + result[2]);

//System.out.println("geeeeeeeeeeeeeeeeeeeeeeeeettttttttt");

// temp hack by marc - 

((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer()).updateRenderState(0);

// end hack by marc

//eye highlights here?

        //eye highlight

        //System.out.println("trying eyes---------------------MEE-----------------------------");

        //System.out.println("trying eyes------------------------MEE---------------------------");

        //System.out.println("trying eyes---------------------------MEE------------------------");

        

        //this.setSpatialSystem(new LocalViewSpatialSystem("spacesys",this));

        //eyeHighlight1 = new EyeHighlightRotator((ScenegraphObject)this.getRoot(), "B_head", "skin_R_eye", new Quaternion(new Vec3(0,0,1),0.1));

        //eyeHighlight2 = new EyeHighlightRotator((ScenegraphObject)this.getRoot(), "B_head", "skin_L_eye", new Quaternion(new Vec3(0,0,1),0.1));

        String path = InnardsProperties.getDirProperty("content.root");

// make it look nice

//this is a file to record the emotional state of your wolf

// emotionfile = new EmotionFileWriter(path+"wolf/emotion/" +name+".txt");

//set up wolf.

WolfCollisionAvoidanceField dcaf = null;        

wm= new BaseWorkingMemoryWithDerivedPerception(getName()+"'s Working Memory");

final WorkingMemory fwm = wm;

setWorkingMemory(wm);

// morph system

MorphSystem mrs = null;

        //if(wolfNumber<3){

            mrs = new WolfMorphSystem("sphere morph system",  AlphaWolfInstallation.pupGeom, AlphaWolfInstallation.adultGeom, wm, this, theWorld);

        //}

        this.setMorphSystem(mrs);

//Motor System

Updateable ms = installMotorSystem(wm);

        //Set the wolf's adult/pup status

        wolfType = AlphaWolfInstallation.getInitialWolfStatus(wolfNumber);

 this.warmSpotLocater = new WolfPerceivableAlleyOop(getName() + "'s warmSpotLocater",

                                                  new ShapeDataRecord(getName()+"_WARM_SPOT"));

  

        //this.warmSpotLocater = WanderingAlleyOop.createNew(getName()+"_WARM_SPOT", false);

        warmSpotLocater.setPosition(AlphaWolfInstallation.getMyWarmSpot(getNumber(), isPup()));

        World.getWorld().add(warmSpotLocater);

        try{

    Object tc = FindByName.findFirst("root_dummy",this.getRoot());

    System.out.println(" geometry is <"+tc+"> class <"+tc.getClass().getName()+">");

            if (tc instanceof PointTransformController)

            {

                // add a child to it

                PointRenderer.TextLabelGeometry tlg = ((PointRenderer)(World.getWorld().getDefaultRenderer())).new TextLabelGeometry("text label", (PointTransformController)tc)

                {

                    /*

                    public String getText()

                    {

                        // pull stuff out of wm

                        String text = (String)fwm.read(World.getWorld().GetTime(), MotorActionGroup.MOTOR_ACTUAL);

                        text +="\nD = ";

                        text += format(((AutonomicVariable)(fwm.read(World.getWorld().GetTime(), "DOMINANCE"))).evaluate(tim

                        e));

                        text +="\nV = ";

                        text += format(((AutonomicVariable)(fwm.read(World.getWorld().GetTime(), "DOMINANCE"))).getValue());

                        text +="\nA = ";

                        text += format(((AutonomicVariable)(fwm.read(World.getWorld().GetTime(), "AROUSAL"))).getValue());

                        return text;

                    }

                    */

                };

            }            

        }

        catch(Exception ex)

        {

        }

            

        iDoubleProvider morphologyAlphaGrabber = new iDoubleProvider()

        {

            public double evaluate(double time)

            {

                return ((Double)fwm.read(time, MorphSpace.MORPHSPACE_BLEND)).doubleValue();

            }

        };

        

dcaf = new WolfCollisionAvoidanceField( path+"wolf/collision/wolf_dx.jpg", 

path+"wolf/collision/wolf_dy.jpg", 

300, 300, //image size

//360, 360, //sheep size

//MAKE THESE NUMBERS BIGGER TO MAKE THE MAP GET BIGGER, IE MORE AVOIDANCE

//45, 45, //sheep size (in world coordinate frame)

content.wolf.AlphaWolfInstallation.collisionMapWidthPup, 

content.wolf.AlphaWolfInstallation.collisionMapHeightPup, //sheep size (in world coordinate frame)

//-50, 50); //top left corner in world

150, 150); //top left corner in world

        dcaf.setBlendDimensionsAndBlendHint(AlphaWolfInstallation.collisionMapWidthAdult, AlphaWolfInstallation.collisionMapHeightAdult, morphologyAlphaGrabber);

        setCollisionAvoidanceSystem(dcaf);

        theWorld.addDynamicObstacle(this);

        

        SensorySystem ss = null;

        PerceptionSystemWithDerivedPerception ps = null;

        ProprioceptionSystem pps = null;

        //EmotionSystem es = null;

        ActionSystem das = null;

        TimeRateSystem trs = null;

        NavigationSystem nav = null;

        

// Sensory and proprioception System

pps = new ProprioceptionSystem("wolf proprioception", wm);

//ss = new WolfSensorySystem("Wolf's Sensory System", this, pps, Math.PI*2, Double.POSITIVE_INFINITY , false);//Math.PI/4.0, 200);

ss = new WolfSensorySystem("Wolf's Sensory System", this, pps,

                            AlphaWolfInstallation.visibilityAngle,

                            AlphaWolfInstallation.visibilityDistance,

                            AlphaWolfInstallation.smellRadius,

                            AlphaWolfInstallation.use_eye_state_to_filter);

this.setSensorySystem(ss);

this.setProprioceptionSystem(pps);

// Perception System

ps = new WolfPerceptionSystem("Wolf's Perception System", ss, wm, this);

setPerceptionSystem(ps);

        

        wm.installPerceptionSystem(ps);

        

        cSEMSystem = new CSEMSystem(this.getName()+": CSEMSystem");

    

// Action System

//if (this.getName().equals("pup"))

das = installActionSystem(wm,ps, wolfNumber, cSEMSystem);

    

// Navigation System

//createAndInstallNavigationSystem("Duncan's Navigation System", LocationPercept.BODYLOCATION, wm);

createAndInstallNavigationSystem("Duncan's Navigation System", LocationPercept.BODYLOCATION, wm, ps);

              

// I want to see where the damn root node is.

if (false){

    TransformController myroot = this.getGeometryRoot();

            innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

    TransformController axes =  (TransformController)gr.createScenegraphObject("loadgeometry", "//gecko/marc/c4/content/misc/axesSmall.x");

    myroot.addChild(axes);

    axes =  (TransformController)gr.createScenegraphObject("loadgeometry", "//gecko/marc/c4/content/misc/axesSmall.x");

    ((iNamedGroup)myroot.getChild(0)).addChild(axes);

}

        wm.write(0.0, MotorActionGroup.MOTOR_ACTUAL, "STAND", AlphaWolfInstallation.getWolfName(wolfNumber));

        wm.write(0.0, MotorActionGroup.MOTOR_DESIRED, "STAND", AlphaWolfInstallation.getWolfName(wolfNumber));

        wm.write(0.0, MotorActionGroup.MOTOR_ADVERB, new Double(0.0), AlphaWolfInstallation.getWolfName(wolfNumber));

//setPosition(new Vec3(5, 5, 0));

        /***************************************************************************/

        // how loud are they shouting into the microphone?":

        /***************************************************************************/

        

        wolfVolumeSmoother = new WolfVolumeSmoother(this);

        //Get the wolf's initial position

        this.setPosition(AlphaWolfInstallation.getInitialPosition(wolfNumber));

        this.setRotation(new Quaternion(new Rotation(new Vec3(0,0,1), AlphaWolfInstallation.initialOrientation[wolfNumber])));

        

if (wolfType == WOLF_TYPE_PUP)

{

    shape = pupShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_ALPHA)

{

    shape = alphaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_BETA)

{

    shape = betaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_AUNT)

{

    shape = auntShapeDataRecord;

}

else

{

    assert(false, "wolf type does not match known flags - what's going on?");

}

        

        //Decide whether the wolf should age or not

        shouldAge = false;

        

        //Register the wolf with the ResetMonitor

        this.register();

        

        //VISUALIZERS

if (!AlphaWolfInstallation.fullScreen)

{

    visualize.CreatureVisualizerMenuFrame frameMenu = new visualize.CreatureVisualizerMenuFrame(this);

    }

}

public TimeRateSystem installTimeRateSystem(Percept proot, WorkingMemory wm) {

    return null; // I do this in clickerduncan

}

Updateable poseGraphMotorSystem = null;

public Updateable installMotorSystem(WorkingMemory wm)

{

        Updateable ms;

        //change this to get all the adult animations.  You might have to ask bill for WolfMotorSystemWithAdult 

    //poseGraphMotorSystem = new WolfMotorSystem("pose graph wolf motor system", wm, this);

    poseGraphMotorSystem = new WolfMotorSystemWithAdult("pose graph wolf motor system", wm, this);

    setMotorSystem(poseGraphMotorSystem);

    ms = poseGraphMotorSystem;

 

    

wm.write(0.0, MotorActionGroup.MOTOR_DEFAULT_GAIT, "WALK", getName());

        

wm.write(0.0, "FACE-LAYER"+MotorActionGroup.MOTOR_ACTUAL, "AMBIENT", getName());

wm.write(0.0, "FACE-LAYER"+MotorActionGroup.MOTOR_DESIRED, "AMBIENT", getName());

return ms;

}

    

//String name, PhysicalObject po, WorkingMemory memory, PerceptionSystem pSystem, EmotionSystem eSystem, boolean attendToSound

    public ActionSystem installActionSystem( WorkingMemory wm, PerceptionSystem ps, int wolfNumber, CSEMSystem csemSystem)

    {

        ActionSystem das;

das = new WolfActionSystem("Wolf's Action System", this, wm, ps, wolfNumber, csemSystem);

setActionSystem(das);

return das;

    }

    /*

    public String getAudioName() {

        return audioName;

    }

      */  

    public Updateable createAndInstallNavigationSystem(String theName, String blpName, WorkingMemory wm, PerceptionSystem ps)

    {

        //do I need to pass it the BODYLOCATIONPERCEPT?

        SpeedTracker st = new SpeedTracker(getName() + "'s speed tracker", this);

        World.getWorld().add(st);

        ActionSystem nav = new WolfNavigationSystem("Wolf's Action System", this, wm, ps, st);

setNavigationSystem(nav);

return nav;

}

public void addExternalPerceptions(double time, Vec3 pos, LinkedList ll)

{

PoseDataRecord pose = null;

    VisualDataRecord vdr;

    AuditoryWithIDDataRecord auddr;

    double dominance = 1.0;

    if (getWorkingMemory() != null)

    {

        Belief beliefOfAtt = ((Belief)(getWorkingMemory().read(time, WorkingMemory.OBJECT_OF_ATTENTION)));

        if (beliefOfAtt!=null)

        {   

            DataRecord dr = beliefOfAtt.getData(time, "Shape Percept");

            String objectOfAtt = dr.toString();

            //System.out.println("Wolf "+this.getName()+" creating PseDataRecord about <"+objectOfAtt+">");

        

            pose = new PoseDataRecord((String)getWorkingMemory().read(time, MotorActionGroup.MOTOR_ACTUAL),

                dominance, objectOfAtt);

        }

        else

        {

            pose = new PoseDataRecord((String)getWorkingMemory().read(time, MotorActionGroup.MOTOR_ACTUAL),

                dominance, "nobody");

        }

        

        if (wolfVolumeSmoother!=null)

        {

            pose.supplyMagnitude(wolfVolumeSmoother.evaluate(time));

        }

        

    }

    

//     System.out.println("       ---------------------- <"+this.getName()+">   positiong <"+pos+">");

    

if (NamedObject.isDebugOn) report("creature", "Posting to the world a VisualWithColorDataRecord at position "+pos.toString());

if (wolfType == WOLF_TYPE_PUP)

{

    shape = pupShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_ALPHA)

{

    shape = alphaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_BETA)

{

    shape = betaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_AUNT)

{

    shape = auntShapeDataRecord;

}

else

{

    assert(false, "wolf type does not match known flags - what's going on?");

}

if (pose != null) {

    vdr = new VisualDataRecord(shape, pose, pos);

}

else {

    vdr = new VisualDataRecord(shape, pos);

}

ll.add(vdr);

if (getWorkingMemory() != null)

{

    /*

    Object arousalVariable = getWorkingMemory().read(time, "AROUSAL");

    if (arousalVariable instanceof AutonomicVariable)

    {

        ArousalDataRecord adr = new ArousalDataRecord(this.getName(), ((AutonomicVariable)arousalVariable).evaluate(time));

        //System.out.println(adr);

        ll.add(adr);

    }

    */

    SoundDataRecord sd;

        if ((sd=getSDRFromMotorActual((String)getWorkingMemory().read(time, MotorActionGroup.MOTOR_ACTUAL)))!=null)

        {

            System.out.println("sending auditory record:"+sd.toString());

            auddr = new AuditoryWithIDDataRecord(shape, sd, new Vec3(pos));

            ll.add(auddr);

        }

        

}

}

    

    

    //for emitting sound data records.

    //mb move this to AlphawolfInstallation...

    protected static String[] howlActuals = new String[]{"HOWL_SIT","HOWL_STAND","HOWL_DOWN"};

    protected static String[] growlActuals = new String[]{"FIGHT_FLANK_LEFT","FIGHT_FLANK_RIGHT","FIGHT_SNAP","FIGHT_GROWL", "FIGHT_BITE", "FIGHT_FEIGN_LEFT", "FIGHT_FEIGN_RIGHT"};

    protected static String[] whineActuals = new String[]{"SUBMIT_LEFT","SUBMIT_RIGHT","SUBMIT_ACTIVE_TURN_LEFT","SUBMIT_ACTIVE_TURN_RIGHT"};

    protected static String[] barkActuals = new String[]{"PLAY","BARK_STAND","BARK_SIT","PLAY_FLANK_LEFT","PLAY_FLANK_RIGHT","BARK_STAND"};

    protected static String[] yelpActuals = new String[]{"PAIN_YELP_LEFT","PAIN_YELP_RIGHT"};

    protected static double howlVol = Double.POSITIVE_INFINITY,

                            growlVol = 100,

                            whineVol = 100,

                            barkVol = 100,

                            yelpVol = Double.POSITIVE_INFINITY;

    protected static HashMap actualToSoundMap;

    static{

        actualToSoundMap = new HashMap();

        SoundDataRecord sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.HOWL_SOUND, howlVol);

        for(int i = 0; i < howlActuals.length; i++){

            actualToSoundMap.put(howlActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.GROWL_SOUND, growlVol);

        for(int i = 0; i < growlActuals.length; i++){

            actualToSoundMap.put(growlActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.WHINE_SOUND, whineVol);

        for(int i = 0; i < whineActuals.length; i++){

            actualToSoundMap.put(whineActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.BARK_SOUND, barkVol);

        for(int i = 0; i < barkActuals.length; i++){

            actualToSoundMap.put(barkActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.YELP_SOUND, yelpVol);

        for(int i = 0; i < yelpActuals.length; i++){

            actualToSoundMap.put(yelpActuals[i], sdr);

        }

    }

    protected static SoundDataRecord getSDRFromMotorActual(String motorActual){

        return (SoundDataRecord)actualToSoundMap.get(motorActual);

    }

    

    

    

public static void setUpShading(PhysicalObject po, String textureName){

    

try{

    Object geom = FindByName.findFirst("mesh_0",po.getRoot());

    

    if (InnardsProperties.getIntProperty("screen.fog", 0)==1)

            {

                content.wolf.camera.FogTools.fogNoTextureOnEverythingBut("mesh_0", po.getRoot());

            }

            

            if (geom instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

        System.out.println(" geometry is <"+geom+"> class <"+geom.getClass().getName()+">");

                System.out.println(" applying shadow shader \n");

                /*WolfShadowShader.apply("", (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom);                    

                WolfShader.apply((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom);

                */

                innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

                SmoothedAuxBuffer2 buffer = new SmoothedAuxBuffer2(gr,

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom,1);

                buffer.update(0);

                String path = InnardsProperties.getDirProperty("content.root");

                WolfShader2WithOverlayNoGround.apply(gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom);

                WolfShadowShader.apply(path+textureName, gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom);  

                gr.update(0);

                

            }

            geom = FindByName.findFirst("skin_L_eye_lid_geometry_0",po.getRoot());

            if (geom instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

        System.out.println(" geometry is <"+geom+"> class <"+geom.getClass().getName()+">");

                System.out.println(" applying shadow shader \n");

   

                innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

                SmoothedAuxBuffer2 buffer = new SmoothedAuxBuffer2(gr,

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom,1);

                buffer.update(0);

                String path = InnardsProperties.getDirProperty("content.root");

                System.out.println("bobobo: "+(path+textureName)); 

                WolfEyelidShader2WithOverlay.apply(gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom,path+textureName);

                

                

                gr.update(0);

                

            }

            geom = FindByName.findFirst("skin_R_eye_lid_geometry_0",po.getRoot());

            if (geom instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

        System.out.println(" geometry is <"+geom+"> class <"+geom.getClass().getName()+">");

                System.out.println(" applying shadow shader \n");

        

                innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

                SmoothedAuxBuffer2 buffer = new SmoothedAuxBuffer2(gr,

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom,1);

                buffer.update(0);

                String path = InnardsProperties.getDirProperty("content.root");

                System.out.println("bobobo: "+(path+textureName)); 

                WolfEyelidShader2WithOverlay.apply(gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom,path+textureName);

                

                

                gr.update(0);

            }

            

            EyeColorUpdateable.install((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(), po);

           

   

            //World.getWorld().getDefaultRenderer().update(0);

  /*  Object eye= FindByName.findFirst("eye_left_0",this.getRoot());

            if (eye instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

                EyeBallShader.apply((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)eye);

            }

    eye= FindByName.findFirst("eye_right_0",this.getRoot());

            if (eye instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

                EyeBallShader.apply((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)eye);

            }*/

            

            

            

            // show skeleton

          //  marc.research.ShowSkeleton skel = new marc.research.ShowSkeleton((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(), "d:/users/badger/c4/content/misc/axesSmall.x", this.getRoot());

        }

        catch(Exception ex)

        {

            ex.printStackTrace();

        } 

// end make it look nice

}

public Wolf(int wolfNumber)

{

//String name, String filename, World theWorld, boolean isReceiver, String audioName, ColorDataRecord color, String textureName) {

super(AlphaWolfInstallation.getWolfName(wolfNumber), AlphaWolfInstallation.getWolfGeometryFile(wolfNumber), 

    null, "B_root_node", "B_head"); 

        World theWorld = World.getWorld();

theWorld.add(this);

this.wolfNumber = wolfNumber;

/*

happinessSlider = new UtilitySlider("this is my happiness", 0, 1000, 0);

ageSlider = new UtilitySlider("this is my age", 0, 1000, 0);

bearingSlider = new UtilitySlider("bearing slider",-1000, 1000, 0);

*/

this.pupShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_PUP,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

this.alphaShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_ALPHA,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

this.betaShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_BETA,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

this.auntShapeDataRecord = new WolfShapeDataRecord(AlphaWolfInstallation.getWolfName(wolfNumber),

                                                  AlphaWolfInstallation.WOLF_SPECIES_SHAPE,

                                                  this.WOLF_TYPE_AUNT,

                                                  AlphaWolfInstallation.getWolfColorName(wolfNumber));

//this.audioName = (wolfNumber%3 < AlphaWolfInstallation.getNumAudioIns()) ? (AlphaWolfInstallation.getAudioName(wolfNumber)) : ("unused");

//put this in its own function so that the receiver's can use the same shader set up.

String texture = AlphaWolfInstallation.getWolfTextureName(wolfNumber);

setUpShading(this, texture);

Geometry geomL = this.getGeometry("skin_L_eye_lid_geometry_0");

Material matL = geomL.getMaterial();

Geometry geomR = this.getGeometry("skin_R_eye_lid_geometry_0");

Material matR = geomR.getMaterial();

if(matL==null || matR == null){

    throw new IllegalArgumentException("material for eyelids is null");   

}

double[] result = new double[3];

((MagicGeometry.GeometryMaterial)matR).getAmbientColor(result);

//System.out.println(result[0] + " " + result[1] + " " + result[2]);

/*

if(texture.indexOf("gray")!= -1){

    matR.setAmbientColor(0.437255, 0.433333, 0.413726);

    matL.setAmbientColor(0.437255, 0.433333, 0.413726);

}

else if(texture.indexOf("dark")!= -1){

    matR.setAmbientColor(.225,.225, .225);

    matL.setAmbientColor(.225,.225, .225);

}

else if(texture.indexOf("light")!= -1){

    matL.setAmbientColor(.6,.6,.6);

    matR.setAmbientColor(.6,.6,.6);

}

else{

    throw new IllegalArgumentException("what color shoudl the eye lids be?");

}

*/

((MagicGeometry.GeometryMaterial)matR).getAmbientColor(result);

//System.out.println(result[0] + " " + result[1] + " " + result[2]);

//System.out.println("geeeeeeeeeeeeeeeeeeeeeeeeettttttttt");

// temp hack by marc - 

((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer()).updateRenderState(0);

// end hack by marc

//eye highlights here?

        //eye highlight

        //System.out.println("trying eyes---------------------MEE-----------------------------");

        //System.out.println("trying eyes------------------------MEE---------------------------");

        //System.out.println("trying eyes---------------------------MEE------------------------");

        

        //this.setSpatialSystem(new LocalViewSpatialSystem("spacesys",this));

        //eyeHighlight1 = new EyeHighlightRotator((ScenegraphObject)this.getRoot(), "B_head", "skin_R_eye", new Quaternion(new Vec3(0,0,1),0.1));

        //eyeHighlight2 = new EyeHighlightRotator((ScenegraphObject)this.getRoot(), "B_head", "skin_L_eye", new Quaternion(new Vec3(0,0,1),0.1));

        String path = InnardsProperties.getDirProperty("content.root");

// make it look nice

//this is a file to record the emotional state of your wolf

// emotionfile = new EmotionFileWriter(path+"wolf/emotion/" +name+".txt");

//set up wolf.

WolfCollisionAvoidanceField dcaf = null;        

wm= new BaseWorkingMemoryWithDerivedPerception(getName()+"'s Working Memory");

final WorkingMemory fwm = wm;

setWorkingMemory(wm);

// morph system

MorphSystem mrs = null;

        //if(wolfNumber<3){

            mrs = new WolfMorphSystem("sphere morph system",  AlphaWolfInstallation.pupGeom, AlphaWolfInstallation.adultGeom, wm, this, theWorld);

        //}

        this.setMorphSystem(mrs);

//Motor System

Updateable ms = installMotorSystem(wm);

        //Set the wolf's adult/pup status

        wolfType = AlphaWolfInstallation.getInitialWolfStatus(wolfNumber);

 this.warmSpotLocater = new WolfPerceivableAlleyOop(getName() + "'s warmSpotLocater",

                                                  new ShapeDataRecord(getName()+"_WARM_SPOT"));

  

        //this.warmSpotLocater = WanderingAlleyOop.createNew(getName()+"_WARM_SPOT", false);

        warmSpotLocater.setPosition(AlphaWolfInstallation.getMyWarmSpot(getNumber(), isPup()));

        World.getWorld().add(warmSpotLocater);

        try{

    Object tc = FindByName.findFirst("root_dummy",this.getRoot());

    System.out.println(" geometry is <"+tc+"> class <"+tc.getClass().getName()+">");

            if (tc instanceof PointTransformController)

            {

                // add a child to it

                PointRenderer.TextLabelGeometry tlg = ((PointRenderer)(World.getWorld().getDefaultRenderer())).new TextLabelGeometry("text label", (PointTransformController)tc)

                {

                    /*

                    public String getText()

                    {

                        // pull stuff out of wm

                        String text = (String)fwm.read(World.getWorld().GetTime(), MotorActionGroup.MOTOR_ACTUAL);

                        text +="\nD = ";

                        text += format(((AutonomicVariable)(fwm.read(World.getWorld().GetTime(), "DOMINANCE"))).evaluate(tim

                        e));

                        text +="\nV = ";

                        text += format(((AutonomicVariable)(fwm.read(World.getWorld().GetTime(), "DOMINANCE"))).getValue());

                        text +="\nA = ";

                        text += format(((AutonomicVariable)(fwm.read(World.getWorld().GetTime(), "AROUSAL"))).getValue());

                        return text;

                    }

                    */

                };

            }            

        }

        catch(Exception ex)

        {

        }

            

        iDoubleProvider morphologyAlphaGrabber = new iDoubleProvider()

        {

            public double evaluate(double time)

            {

                return ((Double)fwm.read(time, MorphSpace.MORPHSPACE_BLEND)).doubleValue();

            }

        };

        

dcaf = new WolfCollisionAvoidanceField( path+"wolf/collision/wolf_dx.jpg", 

path+"wolf/collision/wolf_dy.jpg", 

300, 300, //image size

//360, 360, //sheep size

//MAKE THESE NUMBERS BIGGER TO MAKE THE MAP GET BIGGER, IE MORE AVOIDANCE

//45, 45, //sheep size (in world coordinate frame)

content.wolf.AlphaWolfInstallation.collisionMapWidthPup, 

content.wolf.AlphaWolfInstallation.collisionMapHeightPup, //sheep size (in world coordinate frame)

//-50, 50); //top left corner in world

150, 150); //top left corner in world

        dcaf.setBlendDimensionsAndBlendHint(AlphaWolfInstallation.collisionMapWidthAdult, AlphaWolfInstallation.collisionMapHeightAdult, morphologyAlphaGrabber);

        setCollisionAvoidanceSystem(dcaf);

        theWorld.addDynamicObstacle(this);

        

        SensorySystem ss = null;

        PerceptionSystemWithDerivedPerception ps = null;

        ProprioceptionSystem pps = null;

        //EmotionSystem es = null;

        ActionSystem das = null;

        TimeRateSystem trs = null;

        NavigationSystem nav = null;

        

// Sensory and proprioception System

pps = new ProprioceptionSystem("wolf proprioception", wm);

//ss = new WolfSensorySystem("Wolf's Sensory System", this, pps, Math.PI*2, Double.POSITIVE_INFINITY , false);//Math.PI/4.0, 200);

ss = new WolfSensorySystem("Wolf's Sensory System", this, pps,

                            AlphaWolfInstallation.visibilityAngle,

                            AlphaWolfInstallation.visibilityDistance,

                            AlphaWolfInstallation.smellRadius,

                            AlphaWolfInstallation.use_eye_state_to_filter);

this.setSensorySystem(ss);

this.setProprioceptionSystem(pps);

// Perception System

ps = new WolfPerceptionSystem("Wolf's Perception System", ss, wm, this);

setPerceptionSystem(ps);

        

        wm.installPerceptionSystem(ps);

        

        cSEMSystem = new CSEMSystem(this.getName()+": CSEMSystem");

    

// Action System

//if (this.getName().equals("pup"))

das = installActionSystem(wm,ps, wolfNumber, cSEMSystem);

    

// Navigation System

//createAndInstallNavigationSystem("Duncan's Navigation System", LocationPercept.BODYLOCATION, wm);

createAndInstallNavigationSystem("Duncan's Navigation System", LocationPercept.BODYLOCATION, wm, ps);

              

// I want to see where the damn root node is.

if (false){

    TransformController myroot = this.getGeometryRoot();

            innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

    TransformController axes =  (TransformController)gr.createScenegraphObject("loadgeometry", "//gecko/marc/c4/content/misc/axesSmall.x");

    myroot.addChild(axes);

    axes =  (TransformController)gr.createScenegraphObject("loadgeometry", "//gecko/marc/c4/content/misc/axesSmall.x");

    ((iNamedGroup)myroot.getChild(0)).addChild(axes);

}

        wm.write(0.0, MotorActionGroup.MOTOR_ACTUAL, "STAND", AlphaWolfInstallation.getWolfName(wolfNumber));

        wm.write(0.0, MotorActionGroup.MOTOR_DESIRED, "STAND", AlphaWolfInstallation.getWolfName(wolfNumber));

        wm.write(0.0, MotorActionGroup.MOTOR_ADVERB, new Double(0.0), AlphaWolfInstallation.getWolfName(wolfNumber));

//setPosition(new Vec3(5, 5, 0));

        /***************************************************************************/

        // how loud are they shouting into the microphone?":

        /***************************************************************************/

        

        wolfVolumeSmoother = new WolfVolumeSmoother(this);

        //Get the wolf's initial position

        this.setPosition(AlphaWolfInstallation.getInitialPosition(wolfNumber));

        this.setRotation(new Quaternion(new Rotation(new Vec3(0,0,1), AlphaWolfInstallation.initialOrientation[wolfNumber])));

        

if (wolfType == WOLF_TYPE_PUP)

{

    shape = pupShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_ALPHA)

{

    shape = alphaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_BETA)

{

    shape = betaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_AUNT)

{

    shape = auntShapeDataRecord;

}

else

{

    assert(false, "wolf type does not match known flags - what's going on?");

}

        

        //Decide whether the wolf should age or not

        shouldAge = false;

        

        //Register the wolf with the ResetMonitor

        this.register();

        

        //VISUALIZERS

if (!AlphaWolfInstallation.fullScreen)

{

    visualize.CreatureVisualizerMenuFrame frameMenu = new visualize.CreatureVisualizerMenuFrame(this);

    }

}

public TimeRateSystem installTimeRateSystem(Percept proot, WorkingMemory wm) {

    return null; // I do this in clickerduncan

}

Updateable poseGraphMotorSystem = null;

public Updateable installMotorSystem(WorkingMemory wm)

{

        Updateable ms;

        //change this to get all the adult animations.  You might have to ask bill for WolfMotorSystemWithAdult 

    //poseGraphMotorSystem = new WolfMotorSystem("pose graph wolf motor system", wm, this);

    poseGraphMotorSystem = new WolfMotorSystemWithAdult("pose graph wolf motor system", wm, this);

    setMotorSystem(poseGraphMotorSystem);

    ms = poseGraphMotorSystem;

 

    

wm.write(0.0, MotorActionGroup.MOTOR_DEFAULT_GAIT, "WALK", getName());

        

wm.write(0.0, "FACE-LAYER"+MotorActionGroup.MOTOR_ACTUAL, "AMBIENT", getName());

wm.write(0.0, "FACE-LAYER"+MotorActionGroup.MOTOR_DESIRED, "AMBIENT", getName());

return ms;

}

    

//String name, PhysicalObject po, WorkingMemory memory, PerceptionSystem pSystem, EmotionSystem eSystem, boolean attendToSound

    public ActionSystem installActionSystem( WorkingMemory wm, PerceptionSystem ps, int wolfNumber, CSEMSystem csemSystem)

    {

        ActionSystem das;

das = new WolfActionSystem("Wolf's Action System", this, wm, ps, wolfNumber, csemSystem);

setActionSystem(das);

return das;

    }

    /*

    public String getAudioName() {

        return audioName;

    }

      */  

    public Updateable createAndInstallNavigationSystem(String theName, String blpName, WorkingMemory wm, PerceptionSystem ps)

    {

        //do I need to pass it the BODYLOCATIONPERCEPT?

        SpeedTracker st = new SpeedTracker(getName() + "'s speed tracker", this);

        World.getWorld().add(st);

        ActionSystem nav = new WolfNavigationSystem("Wolf's Action System", this, wm, ps, st);

setNavigationSystem(nav);

return nav;

}

public void addExternalPerceptions(double time, Vec3 pos, LinkedList ll)

{

PoseDataRecord pose = null;

    VisualDataRecord vdr;

    AuditoryWithIDDataRecord auddr;

    double dominance = 1.0;

    if (getWorkingMemory() != null)

    {

        Belief beliefOfAtt = ((Belief)(getWorkingMemory().read(time, WorkingMemory.OBJECT_OF_ATTENTION)));

        if (beliefOfAtt!=null)

        {   

            DataRecord dr = beliefOfAtt.getData(time, "Shape Percept");

            String objectOfAtt = dr.toString();

            //System.out.println("Wolf "+this.getName()+" creating PseDataRecord about <"+objectOfAtt+">");

        

            pose = new PoseDataRecord((String)getWorkingMemory().read(time, MotorActionGroup.MOTOR_ACTUAL),

                dominance, objectOfAtt);

        }

        else

        {

            pose = new PoseDataRecord((String)getWorkingMemory().read(time, MotorActionGroup.MOTOR_ACTUAL),

                dominance, "nobody");

        }

        

        if (wolfVolumeSmoother!=null)

        {

            pose.supplyMagnitude(wolfVolumeSmoother.evaluate(time));

        }

        

    }

    

//     System.out.println("       ---------------------- <"+this.getName()+">   positiong <"+pos+">");

    

if (NamedObject.isDebugOn) report("creature", "Posting to the world a VisualWithColorDataRecord at position "+pos.toString());

if (wolfType == WOLF_TYPE_PUP)

{

    shape = pupShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_ALPHA)

{

    shape = alphaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_BETA)

{

    shape = betaShapeDataRecord;

}

else if (wolfType == WOLF_TYPE_AUNT)

{

    shape = auntShapeDataRecord;

}

else

{

    assert(false, "wolf type does not match known flags - what's going on?");

}

if (pose != null) {

    vdr = new VisualDataRecord(shape, pose, pos);

}

else {

    vdr = new VisualDataRecord(shape, pos);

}

ll.add(vdr);

if (getWorkingMemory() != null)

{

    /*

    Object arousalVariable = getWorkingMemory().read(time, "AROUSAL");

    if (arousalVariable instanceof AutonomicVariable)

    {

        ArousalDataRecord adr = new ArousalDataRecord(this.getName(), ((AutonomicVariable)arousalVariable).evaluate(time));

        //System.out.println(adr);

        ll.add(adr);

    }

    */

    SoundDataRecord sd;

        if ((sd=getSDRFromMotorActual((String)getWorkingMemory().read(time, MotorActionGroup.MOTOR_ACTUAL)))!=null)

        {

            System.out.println("sending auditory record:"+sd.toString());

            auddr = new AuditoryWithIDDataRecord(shape, sd, new Vec3(pos));

            ll.add(auddr);

        }

        

}

}

    

    

    //for emitting sound data records.

    //mb move this to AlphawolfInstallation...

    protected static String[] howlActuals = new String[]{"HOWL_SIT","HOWL_STAND","HOWL_DOWN"};

    protected static String[] growlActuals = new String[]{"FIGHT_FLANK_LEFT","FIGHT_FLANK_RIGHT","FIGHT_SNAP","FIGHT_GROWL", "FIGHT_BITE", "FIGHT_FEIGN_LEFT", "FIGHT_FEIGN_RIGHT"};

    protected static String[] whineActuals = new String[]{"SUBMIT_LEFT","SUBMIT_RIGHT","SUBMIT_ACTIVE_TURN_LEFT","SUBMIT_ACTIVE_TURN_RIGHT"};

    protected static String[] barkActuals = new String[]{"PLAY","BARK_STAND","BARK_SIT","PLAY_FLANK_LEFT","PLAY_FLANK_RIGHT","BARK_STAND"};

    protected static String[] yelpActuals = new String[]{"PAIN_YELP_LEFT","PAIN_YELP_RIGHT"};

    protected static double howlVol = Double.POSITIVE_INFINITY,

                            growlVol = 100,

                            whineVol = 100,

                            barkVol = 100,

                            yelpVol = Double.POSITIVE_INFINITY;

    protected static HashMap actualToSoundMap;

    static{

        actualToSoundMap = new HashMap();

        SoundDataRecord sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.HOWL_SOUND, howlVol);

        for(int i = 0; i < howlActuals.length; i++){

            actualToSoundMap.put(howlActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.GROWL_SOUND, growlVol);

        for(int i = 0; i < growlActuals.length; i++){

            actualToSoundMap.put(growlActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.WHINE_SOUND, whineVol);

        for(int i = 0; i < whineActuals.length; i++){

            actualToSoundMap.put(whineActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.BARK_SOUND, barkVol);

        for(int i = 0; i < barkActuals.length; i++){

            actualToSoundMap.put(barkActuals[i], sdr);

        }

        sdr = new SoundDataRecordWithVolume(AlphaWolfInstallation.YELP_SOUND, yelpVol);

        for(int i = 0; i < yelpActuals.length; i++){

            actualToSoundMap.put(yelpActuals[i], sdr);

        }

    }

    protected static SoundDataRecord getSDRFromMotorActual(String motorActual){

        return (SoundDataRecord)actualToSoundMap.get(motorActual);

    }

    

    

    

public static void setUpShading(PhysicalObject po, String textureName){

    

try{

    Object geom = FindByName.findFirst("mesh_0",po.getRoot());

    

    if (InnardsProperties.getIntProperty("screen.fog", 0)==1)

            {

                content.wolf.camera.FogTools.fogNoTextureOnEverythingBut("mesh_0", po.getRoot());

            }

            

            if (geom instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

        System.out.println(" geometry is <"+geom+"> class <"+geom.getClass().getName()+">");

                System.out.println(" applying shadow shader \n");

                /*WolfShadowShader.apply("", (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom);                    

                WolfShader.apply((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom);

                */

                innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

                SmoothedAuxBuffer2 buffer = new SmoothedAuxBuffer2(gr,

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom,1);

                buffer.update(0);

                String path = InnardsProperties.getDirProperty("content.root");

                WolfShader2WithOverlayNoGround.apply(gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom);

                WolfShadowShader.apply(path+textureName, gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom);  

                gr.update(0);

                

            }

            geom = FindByName.findFirst("skin_L_eye_lid_geometry_0",po.getRoot());

            if (geom instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

        System.out.println(" geometry is <"+geom+"> class <"+geom.getClass().getName()+">");

                System.out.println(" applying shadow shader \n");

   

                innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

                SmoothedAuxBuffer2 buffer = new SmoothedAuxBuffer2(gr,

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom,1);

                buffer.update(0);

                String path = InnardsProperties.getDirProperty("content.root");

                System.out.println("bobobo: "+(path+textureName)); 

                WolfEyelidShader2WithOverlay.apply(gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom,path+textureName);

                

                

                gr.update(0);

                

            }

            geom = FindByName.findFirst("skin_R_eye_lid_geometry_0",po.getRoot());

            if (geom instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

        System.out.println(" geometry is <"+geom+"> class <"+geom.getClass().getName()+">");

                System.out.println(" applying shadow shader \n");

        

                innards.renderers.graphics.magic.MagicRenderer gr = (innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer();

                SmoothedAuxBuffer2 buffer = new SmoothedAuxBuffer2(gr,

                    (innards.renderers.graphics.magic.MagicDxGeometry)geom,1);

                buffer.update(0);

                String path = InnardsProperties.getDirProperty("content.root");

                System.out.println("bobobo: "+(path+textureName)); 

                WolfEyelidShader2WithOverlay.apply(gr,

                                (innards.renderers.graphics.magic.MagicDxGeometry)geom,path+textureName);

                

                

                gr.update(0);

            }

            

            EyeColorUpdateable.install((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(), po);

           

   

            //World.getWorld().getDefaultRenderer().update(0);

  /*  Object eye= FindByName.findFirst("eye_left_0",this.getRoot());

            if (eye instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

                EyeBallShader.apply((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)eye);

            }

    eye= FindByName.findFirst("eye_right_0",this.getRoot());

            if (eye instanceof innards.renderers.graphics.magic.MagicDxGeometry)

            {

                EyeBallShader.apply((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(),

                    (innards.renderers.graphics.magic.MagicDxGeometry)eye);

            }*/

            

            

            

            // show skeleton

          //  marc.research.ShowSkeleton skel = new marc.research.ShowSkeleton((innards.renderers.graphics.magic.MagicRenderer)World.getWorld().getDefaultRenderer(), "d:/users/badger/c4/content/misc/axesSmall.x", this.getRoot());

        }

        catch(Exception ex)

        {

            ex.printStackTrace();

        } 

// end make it look nice

}
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figure 69. Optional blocks (blue) and class instantiations (red)   are distributed 
broadly through the alphaWolf action system.



#e context tree can clearly help with the distribution of parameters across a set 
of systems — this is the very purpose to which we have put it in the examples 
above. #is ability could be pressed into backing a factory system — we could 
distribute the names of classes to instantiate just as easily as we can distribute 
other parameters. But perhaps there is a more apt and more flexible meeting of 
the context tree and the factory pattern.

We can use a version of the interstitial context-tree programming technique 
described above, page 206. Instead of shielding systems from changes that are 
incompatible with previously saved data, by installing context-specific filters on 
access to that data, we can install context-specific factory functions to instanti-
ate classes.

We build up the language very similarly — and we should build it up, for it is 
going to become a common programming unit for a whole variety of systems. 
#ey key programming element is the the CodeElement from before:

interface CodeElement<t_value>{

 t_value open(t_value filter);
 t_value close(t_value filter);
}
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#ese elements are stored and executed in context-local lists inside Extend-

edKeys. #is class offers what Key offers plus a number of convenient versions of 
the add method that help write more factory-based context tree programs. #e 
most important of these methods are: 

call(Object o) — wraps any object (that is presumed to have only one pub-
licly accessible method) in a CodeElement and adds call to this element on 
the stack.

lookup(Key<t_value> o) — looks up a key from the context tree.

is(t_value o) — just returns this value into the execution order of the stack.

with(Key<t_value> key, t_value value) — places a CodeElement that temporar-
ily sets a particular key to a particular value on the stack.

makeNew() — puts a CodeElement on the stack that will instantiate classes 
that are passed to it (runs in close(...))

#is lets us declare a default instantiation, perhaps in a creature base-class, like:

navigationSystemFactory.is(DefaultNavigation.class).makeNew();

And then from some other location, perhaps in the action system, where we 
need a navigation system:

navigationSystemFactory.get();

will suffice. #is is the most straightforward of all possible examples. We can 
use the context tree to pass “keyword parameters” to this factory:

navigationSystemFactory.with(bodySize, 10).get();

A little care must be taken with how 
Java’s generics and type system are used 
to make this syntax work. In general we 

admit not only t_value, the underlying 
value type for the keys, but <? extends 

t_value>, and Class<? extends t_value> to 
be passed into these methods. !ese 

methods are omitted for brevity. 
Internally, of course, Keys are free to 

ignore the parameter on the type, since 
the implementation of generics is not 

strictly part of Java’s type system. 
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We can, far away from this invocation or declaration, manipulate the factory 
lookup such that this action system gets a special navigation system, perhaps in 
a subclass of the base creature class:

navigationSystemFactory.inside(”action-sys/”).is(GraphicalNavigationSystem.class);

Or, less radically, we could just provide a better default:

navigationSystemFactory.with(bodySize, myBodySize);

In order to distribute these throughout the partially assembled context tree it is 
useful to have a path expression language to refer to contexts different from the 
current one. Rather than invent an expression language that handles hierarchies 
of attributed objects we borrow an extremely well thought-out, standardized 
expression language made for searching xml —XPath — and map its object 
model (which is usually the tree-like structure of elements and attributes in 
xml) onto the context tree (a structure of contexts and keys). #is allows simple 
searching for contexts by name over the whole tree (looking for “action-sys” re-
gardless of where we are):

navigationSystemFactory.inside(”//action-sys/”)...

as well as more complex expressions that may match multiple contexts (looking 
for a context that contains a value for direction):

navigationSystemFactory.insideAll(”//*[ct:containsKey(‘direction’)]”)...

#e methods that round out this interstitial programming environment are: 

and(Object o) — call-s o should nothing have been found yet. 

beforeAnd(Object o) — call-s o first in the stack, and only calls the rest of the 
stack if it doesn’t come up with an object.

XPath is a w3c spectfication — 
http://www.w3.org/TR/xpath

!e flexible Java XPath engine used for this work is Jaxen — 
http://jaxen.org/faq.html

!is project specifically allows XPath expressions to be 
evaluated over “custom” object models (here, the context tree, 

later, the Fluid view hierarchy).
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importing(Object o) — imports the context given by o into the stack at this 
point.

#ere is a strong similarity between these methods and the complex, multiple 
dispatch of the Common Lisp Object system. However, here, dispatch is ex-
tended in a context-centric way external to the class or method structure target. 
#is borrows, then, the flavor of Aspect Orientation but is specifically focused 
on the problem of instantiation and allows configuration behavior to be modi-
fied live, on a per-context, that is a per-hierarchically-defined-module, basis re-
using the functional groups that the context tree represents.

While these techniques do not make the problems of extending complex code 
assemblages evaporate they do make a great deal of different to the problem. 
Unlike the tangled “excesses” of earlier agents that, while informing the work 
that followed, were, as a set of code, ultimately abandoned after premiering, the 
agents of how long... were constructed both with more generic element and more 
simply. #us, we will see these techniques exploited in the agents of how long... 
— in the LineAcceptor system, page 306, and the “subclasses” of the agents built 
between workshops and in the evenings between rehearsals would not have 
been possible without this mobility. Intense, but open collaborative practice re-
quires a solution to the abstract and flexible / concrete and useful dichotomy — 
one’s prior work to entering the theater must be useful if there’s work to be 
done, but it must be flexible if there’s a collaboration that is to occur.

 3.   An annotation tag library for context-tree use in Java

Although it is certainly possible to implement the above context-tree key class, 
and use the context tree itself in pure Java, the works discussed in this thesis 
have gravitated towards one of two alternative paths. #ey either provided ex-
tended, syntactic “sugar” for the context tree in the form of a pre-processor lan-
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guage for Java or, more recently, a set of method and member annotations and a 
custom, byte-code injecting classloader that manipulates classes based on these 
annotations. 

#is latter implementation, which has only become possible with the most re-
cent revision of the Java language, has the considerable benefit of standardiza-
tion, allowing one to maintain an utterly conventional tool chain in the presence 
of even radical alterations to the semantics of Methods and Classes. Because of 
this, it will be this implementation that will be described here. It is in this “tag 
library” that we are the closest to “Aspect Oriented Programing”, but main-
stream AoP lacks the idea of a context-tree.

Java's annotations (similar in implementation to the annotations of C#) are es-
sentially programmer-defined, structured “comments” in code that can be read at 
run-time, or in this case, class-load time. We start with our most basic annota-
tion that tags classes:

@context

this informs our custom class-loader that this class has the potential to have 
the other tags from our library. It is a class-load-time error for subclasses 
of such classes to omit this tag and debug-time error for other tags to be 
present in a class without this tag. It provides both safety and optimiza-
tion for the load time.

@dynamic(name=optional prefix)

marks this member variable as being context-local. subsequent Write and 
read access to and from this variable is rewritten to go through a context 
key. This context key's identifier defaults to the name of the member + the 
name of the class. Currently, only private object reference members of 
classes may have this tag.
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@subcontext(name)

places the contents of this method inside a child of the current context called 
“name”, creating this context if necessary. Crucially this has three proper-
ties that are hard to get right without language support: the tag exhibits 
the expected behavior for overridden methods, specifically their method 
bodies are wrapped and wrapped once regardless of the existence, location 
and number of any calls to methods in the superclass; secondly the con-
text is correctly unwound should the method exit abnormally; and lastly 
this tag has the expected behavior even when the method annotated is a 
constructor. 

@inside(contextdescription, creationdescription=default)

a more flexible form of “subcontext” that allows specification of two helper 
classes that define how to find the subcontext and how to create it should 
it not be found. In addition to the helper classes that “subcontext” uses that 
finds a named child context of the current context and creates one if it 
isn't there, other helpers have been found to be useful. One acts as “sub-
context” does once and then from that point on goes back to that exact 
same context, regardless of the current context. The current context is 
restored upon the exit of the method. This is useful, for example, to en-
sure that methods of an instance are executed in the same context that 
was present when the instance was constructed.

 228



Execution orderings

@deferUntilEntry(contextdescription, queuedescription=default)
@deferUntilExit(contextdescription, queuedescription=default)

these two tags defer the execution of the body of the method until a specific 
context is entered or exited. These tags are only to be used on methods 
that have no return value. The queue description describes a class respon-
sible for storing the deferred method calls, which need not be a simple list: 
subclasses that concatenate multiple method calls together into a single 
call are useful, more complex deferrals will be discussed, page 258.

#ese annotations clearly give a lot of power to a class to alter the scope 
surrounding the execution of a method in a way that maintains a cou-
pling between object and execution context. #ey are not arbitrarily 
powerful — for example, it is impossible with these tags (but not with 
the underlying interfaces) to change the context in which a method exe-
cutes based on a parameter to that method.

@autoUpdates

this tag marks a constructor of a class (or a whole class, thus marking all 
constructors). Constructors marked this way register the constructed in-
stance with a central auto-update list fetched from context-tree local stor-
age which, by default is an inverted context-tree list, 216. Instances con-
structed this way will have their update(...) method called when the auto-
update chain is updated. The interface for Updateables is trivial:

interface Updateable{

 void update();
}
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A more complex life-cycle interface is optionally:

interface Task extends Updateable {

 void init();

 void update();

 void shutdown();
 void forceShutdown();
 void isShuttingDown();
 void hasShutdown();

}

#is fuses two models together, optional shutdown and forced shut-
down. A life-cycle object that has shutdown() called on it may opt to 
return true from isShuttingDown() and may ultimately return true from 
hasShutdown(), guaranteeing that this object will never have update() 
called on it again from this context. Alternatively, should the updator 
call forceShutdown() this component must expect never to have update 
called on it again (again, from this context). In this case, components 
that absolutely must shut down over a period of a few calls to update() 
should arrange for their update() to be called by some other means.

#ese life-cycle interfaces are implemented by a wide range of classes 
throughout how long..., 22, and Loops Score; the agents of how long... 
themselves implement these interfaces, as well as the rendering tasks 
that require graphics resources, and the individual graphical elements 
and scripts in the Fluid environment.

#e deletion of contexts, which would silently prevent subsequent calls 
to update() for autoUpdatable-s stored in inverted context-tree lists with-
out any call to shutdown(), and therefore violate the implied contract are 
monitored for by installing “traps” at the current level of the context tree. 
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@doesAutoUpdating
@doesAutoUpdatingOverContext
@doAutoUpdate

These tags are for classes that do the updating — instances that will be con-
tainers for other classes. The first tag marks a constructor of a class (or a 
whole class, thus marking all constructors) as owning part of the context-
tree local auto update tree. The constructor (including super constructor 
invocations, and all inherited subclass constructors) is effectively wrapped 
in a pair of save(...) and restore(...) calls for the context-tree local storage for 
the central auto-update list. The second tag uses a inverted context-tree 
list rather than a conventional list to back the storage of this local update 
loop. This is useful in the case where a single instance is expecting to be 
updated in several times in different contexts. The third tag performs this 
auto-updating in the body of the following method in a “overriding safe” 
manner.

Of course, a majority of classes that are marked @doesAutoUpdating are 
marked @autoUpdates as well — they are “updatable” containers that 
create things that are updated in turn. 

Several more tags will be added to this library through the same mechanism to 
complete the Diagram system, they integrate some of the features of that work 
back into the language — transforming what looks to the caller to be a method 
call into an object that is deferred, executable, inspectable, modifiable. 
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 4.   !e Diagram framework — the channel / marker representation

#e Diagram framework, in this work, synthesizes many of the technologies 
described above to generate a canvas on which unsynchronized or uncoupled 
processes, perhaps action-selection systems or perceptual traces, can mark — 
and out of which a new figuration (here a new temporal patterning) can be 
found. It is simultaneously a loosening of techniques like the c5 action-group, 
hierarchical scene-graph-based graphics and the pose-graph motor system, and 
an opportunity for more direct temporal specification. 

#ere are two extremely minimal core elements to the Diagram framework: the 
channel and the marker. A marker is an object with a time and duration with 
respect to some time-base. A channel is an set of markers, ordered by onset 
time that shares a time-base with its markers. A channel has a unique channel 
context — that is, a part of a local context-tree that is associated with the Dia-
gram system. All diagram system storage is local with respect to this context 
tree, thus all marker creation, modification and deletion is potentially specula-
tive. Markers are always part of one and only one channel. 

#is micro-structure is generic enough to permit the re-expression of many of 
the data structures seen thus far. #is channel / marker structure is a minimal 
subset of the representation behind the generic radial-basis channel, and behind 
the visual elements laid out in a sheet in Fluid, it will become our instantiated 
action, and our scheduled pose in the pose-graph motor system.

#e first layer of Diagram focuses on building channels and markers extremely 
well. In particular it is occupied by building notification mechanisms (for the 
addition, change and deletion of markers) with respect to whole channels or 
individual markers. #ese notification chains support batching and event coa-
lescing, page 258, and form the basis of the efficiency and efficacy of the algo-

In Francis Bacon: the logic of sensation, French 
philosopher Gilles Deleuze presents the diagram as 

a stage of artistic creation, citing Bacon’s example 
of a brush stroke which reveals that the mouth of a 

portrait could cut across the entire face, suddenly 
increasing the sense of distance and transforming 

the figuration. Deleuze affirms the role of chance in 
this act — the lines of the diagram are “irrational, 
involuntary, accidental, free, and haphazard”. !e 

diagram exists on the boundary between 
preparatory work and the act of painting proper; 
its chaos must be transformed into a new form of 

figuration.

G. Deleuze, Francis Bacon: !e Logic of Sensation,  
D. W. Smith , T. Conley (trans.), University of 

Minnesota Press, 2003.
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figure 70. #e basic anatomy of a marker and a 
channel.
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rithms that use these channels. Both channels and markers are mutable, but can 
provide immutable views as well as views onto windows of time or segments. 

A detailed discussion of these inner details here would be unmotivated, so we 
will wait until the uses of the framework come into focus in making Loops Score 
before describing the implementation aspects. #e goal for the Diagram system 
is not to provide another action selection algorithm (although we shall see one, 
page 235), nor another perceptual framework (although, page 242), nor a re-
placement for the pose-graph motor system (although, by the time we see the 
Fluid environment Diagram will have turned the pose-graph inside out, page 
329). Part of the goal is to simply re-articulate the previous structures in a form 
that reduces the barrier for interaction between them. But in doing so I will 
present a new “recomposition” of action and motor patterning. #e goal is to 
build a support structure around these algorithms that extends their power, 
specifically in the realm of supporting complex temporal patterning, specifically 
for the use of the agent metaphor in time-based art. It renders explicit, indeed 
graphic, what was previously implicitly hidden in action system initialization 
code, the trace of execution through a motor system or the pattern of activation 
in a perception system. It allows the re-coupling of algorithmic processes that 
cut across systems and algorithms in the temporal domain. 

Some principles, however, guide the development of the Diagram-based works 
and the uses to which we put the channels and markers — Loops Score, how 
long..., and to a lesser extent 22, Imagery for Jeux Deux and !e Music Creatures 
(which developed an older version of this Diagram work). 

#ese principles are:

marker manipulation should be reversible and inspectable — we shall see 
algorithms for marker production (essentially nothing more than produc-
tion systems implemented with an explicit time axis) and manipulation, 

 233



but very little information is ever irreversibly removed or irretrievably hid-
den in any of these manipulations. Rather than translating a marker by 
overwriting its position, a relationship is set up and maintained that ac-
tively moves a marker to the left. This relationship is added to the channel, 
visible in the diagram, inspectable by other processes. Where action-
selection systems allow code to compete for expression, the Diagram sys-
tem additionally allows processes to compete for the modification of ex-
pressed lines or channels. Notification and compression support make 
reading and storing (and strategically forgetting relationships) computa-
tionally tenable.

transient, experimental computation — on the other hand, the computa-
tional impact of this agglomerative network of relationships is bounded by 
the transient nature of these channels. Often they are only representing 
the near future, and at one end there is the present — a scheduler horizon 
— and at the other there is an increasing uncertainty about the future — 
a planning horizon. The detailed relationships are meant to be transient, 
compressed and discarded. Slicing channels and modifiable sub-views 
onto channels help with writing code that efficiently deals with windowed 
portions of time. Context-Tree backed storage allows structural modifica-
tion to channels to be attempted in sub-context, experimentally conducted 
only to be effortlessly discarded. 

highly accessible — the channel / marker idea would be abstract beyond the 
point of utility if it wasn't for the common set of “glue systems” that make 
Diagram-like computations fast and allows them all to share a common 
language. The idea itself is useless, and in addition not very diagram-like, 
should these channels and markers be inaccessible to systems that have 
little commitment to the Diagram system. In the work that follows the 
channel / marker system is forced into systems by extending the pro-
gramming language, page 226, aggressively finding commonalities between 
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  THE C5 + DIAGRAM ACTION SELECTION ALGORITHM  

state (all state marked @dynamic)

startles — a set of action triggers that get special privilege to interrupt others.  

triggers — a set of action triggers inside this group.

lastValues — a mapping from tuple to real number

budget — an object that will handle the balancing of the action budget and hold the “list” 
of current actions

algorithm

if the maximum tuple.expectedValueOf() over all of startles is greater than zero then 

nextOffer becomes the 
greatest of these.

▶ otherwise,       

construct the new map nextValues[trigger] = trigger.expectedValueOf() for all triggers

if any trigger has nextValue[trigger]>lastValues[trigger] and 

nextValue[trigger] > 2* min(budget.currentlyActive()) then select a new action

if budget.isUnbalenced() then select a new action

▶ if we need to select a new action:     

if all of nextValues[...] = 0 then nothing is done

▶ otherwise,   

sample nextOffer from a normalized version of nextValues[...]

success = budget.offer(nextOffer)

▶ if success:   

nextOffer.instantitate()

and set lastValues[...] = nextValues[...]



it and the visual tools (Fluid, page 393), between it and more traditional 
computer musical concerns (Loops Score) and between it and the way that 
motor systems are structured (Loops Score, page 250). Diagram will blur 
the separation between action selection (or more strictly action layout), the 
kind of motor sequencing that agents tend to do and the previous working 
memory / context-tree “blackboard” that was used as a communicative 
glue between systems.

As the description of the work that is based on this kernel continues it should 
be more apparent just what it is that is diagram-like about this diagram frame-
work. #e Diagram system's channels become a field, a rapidly receding canvas 
where multiple systems leave initially uncoordinated marks in time only to have 
their chance-like relationships enforced, reorganized or reshaped by other proc-
esses that induce patterns out of them and their histories.

Action selection in the Diagram framework

Diagram, as described up until this point, is missing a key part of the action 
system story — an action-selection strategy. While we would be free to take a 
c5 implementation of action-tuples and have its actions mark channels, it 
should be clear that this algorithm isn't quite taking full advantage of the chan-
nel / marker representation. Firstly, this approach knows little and says less 
about any time other than the present. Secondly, it doesn't then open up its ac-
tion selection to external modification — its action-selection results are neither 
reversible or inspectable. #irdly, at the core of c5, as it is typically deployed, is 
an assumption that there is only one, always one and exactly one active action at 
any time. Of course, creatures constructed with this approach are free to have 
multiple c5 action groups operating in parallel — and we have seen such crea-
tures in alphaWolf and even the colony as a whole in Loops — but in Diagram 
we are particularly interested in this problem of multiple action selection in or-
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der for these multiple actions to be coordinated. Specifically, it isn't clear that 
delegating multiple action selection to multiple independent and continually 
overlapping groups isn't simply deferring a problem of coordination rather than 
solving it.

My approach is to disassemble the c43/c5 + action-tuple organization and then 
reassemble it in a slightly different order, ultimately exposing its internals as a 
diagram-like representation.

While the action-tuple is a convenient shape to draw and a convenient chunk to 
think about we will have to split it into two to prepare it for multiple simultane-
ous actions (additionally, in the overview of c43/c5 we already saw that an 
action-tuple had to expose its .trigger() .value() and .doWhile() methods sepa-
rately. #e unity of the action-tuple is clearly already under attack).

#e trigger becomes, in addition to the place where we obtain the instantaneous 
relevance and expected value for the action, the factory for the action payload 
— an object that, when asked, is capable of producing an action which then 
exists independently of the trigger. #is formalizes the split described above—  
although many factories and payloads collaborate after creation — and it allows 
triggers to effectively “group” parametric actions together and possibly instanti-
ate multiple versions of them simultaneously, or even just one after another.

#e second modification to c43/c5 is to explicitly allow multiple simultaneous 
actions — assuming the trigger factories are willing to allow it. We define an-
other object that represents the action budget — the number of simultaneous 
actions that this action group is willing to maintain. With the help of this ob-
ject, the core c43/c5 proceeds as normal — the central heuristic of only select-
ing actions when the action-group’s triggers and do-whiles have changed both 
significantly and relevantly remains, only here an action selection may result in 

Tr, Ac, Do   Va 

Ac, Do   Va Tr,  Va 

c43/c5

c5 + Diagram

figure 71. #e action-tuple is split up into two 
parts, a trigger factory and an produced action.
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an action-tuple being added to the active set rather than replacing it, or the out-
going, loosing action being deleted from the active set according to the demands 
of the action budget.

#e final twist is to both store and present the results of the action-selection 
strategy in a publicly accessible channel. Running actions are markers, triggers 
produce markers when they are selected for. Indeed triggers do not simply in-
stantiate actions, they schedule actions by writing into the channel, and are free 
to place the results of their winning selection in the future. All storage concern-
ing whether an action is or is not active — in particular, for the purposes of 
maintaining this “budget” of multiple actions — is maintained with respect to 
this channel, and a number of other, auxiliary and independent processes can 
act on this channel without fear of disturbing the action-selection process. 
#ese processes fine-tune, realign, filter, recombine and even delete the sched-
uled actions. 

Many of the subtle timing and organization issues of the c43/c5 selection algo-
rithm either evaporate or become explicit and visualizable rather than implicit. 
#rough the trigger / action split we have made explicit the possibilities for ac-
tions to participate in more than one group and now have a focused location for 
more complex cross inhibition. #rough the open channel / marker representa-
tion, temporal coordinations that would have to be implicitly coaxed out of the 
temporal dynamics of the triggers and do-whiles can now be specified as quite 
self-contained processes orthogonal to action selection itself — and we shall see 
many examples of processes that cut across the results of action selection, clean 
them up and constrain their relationships. 

#ese post-selection modifications need not be kept strictly downstream of the 
trigger instantiations — by pushing all of the action-selection and budget stor-
age into the context-tree we can even allow for speculatively executed, page 215, 

Tr,  Va 

Ac, Do  Va Ac, Do  Va 

trigger-factory

action-channel

Tr,  Va 

Ac, Do  Va 

figure 72. #e trigger factories schedule produced 
actions into a channel which is then read out over 

time to execute the actions.
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action selection, and more usefully, action instantiation. An example: triggers 
can retract their instantiated actions, “unscheduling” them from the channel. 
#ey might do this because, after the application of the processes that would 
clean up the scheduling of actions in the channel, some condition is not true. 
#e only signal propagation out of this speculative execution “closure” is the the 
trace that the trigger should not attempt to re-fire.

Finally, by creating a persistent trace of the action execution, we formalize some 
of the ad hoc nature of the deferred credit assignment that we found necessary 
for trainable characters, page 71 (a direct use of this flexibility, page 324); one 
can imagine other processes scavenging inputs from the history of execution — 
the channel of markers past.

Although it should be clear that, at least in principle, the availability of post-
selection, ad hoc filtering processes increases the both expressive range of action-
selection within the c5 toolkit and the vocabulary available to the agent author 
for articulating that range, it is worth pausing to review what such an extended 
action selection algorithm might have meant for the alphaWolf project. #e 
Diagram framework explicitly treats many of the problems that caused pro-
found complexity in the creation of both the action systems of the wolf-pups 
and its interface to the motor systems. Firstly it is important to realize that a 
pup action system is in fact an example of a multiple, parallel action system — 
each consists of an “attention” action group and a “main” action group. However, 
while the execution number and order of these units are fixed by the limits of 
the toolkit at that time (the attention group always runs first, and both groups 
only select once), the order that makes sense to the problem that the behavior 
designer is trying to solve changes depending on the part of the interaction be-
ing authored. Sometimes what the pup should pay attention to is limited by the 
action that the wolf pup is performing (e.g. it should look at the thing that its 
fighting); at other times the actions that ought to be performed are constrained 
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by the object of attention (e.g. the pup can’t fight a navigational marker on the 
ground supplied by the person directing the pup). What raises the stakes of the 
problem is the paucity of ways in which these two groups can be coupled — the 
first group to happen to make a decision gets priority and one ends up fighting 
against the protection against dithering inherent in c5 — the mechanisms to 
bias the rolls of the dice of these action groups are abused to ensure that the 
right set of dice gets rolled first. #is is the spindle around which the complexity 
of figure 16, page 80, weaves itself.

In Diagram the coupling is much more easily expressed as a filtration process on 
the results of a single, much simpler action group. Weights or biases on the trig-
gers of actions remain just that — gone are the additional triggers that manipu-
late what group of actions get a chance to select. A scan of the ultimate behavior 
system file deployed in alphaWolf shows that, in the absence of short-circuiting 
triggers that act in this fashion, the complexity of the action selection process, as 
measured by the number of triggers connected to all action tuples reduces by 
60%. Additionally, it appears that several action tuples, that act as silent place-
holders for actions that subsume control over both groups, would disappear 
entirely.

Secondly, and more speculatively, are the other hypothetical simplifications that 
Diagram could have offered the designers of alphaWolf. Most significant is the 
ability for the channel mechanism to represent, schedule and revoke sequences 
of actions. As I have stated, page 82, the creation of chains of actions and the 
deferral of actions while others run seemed fundamentally difficult in alphaWolf 
— difficult to both express, and to express without damaging the action-groups 
ability to prevent dithering. Sequences where pups explore their environment, 
by moving between random locations; where adults move away from the pack 
only to return later; and indeed the primary interaction of moving towards a 
pup, fighting it and winning or loosing form the backbone of this kind of direct-
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able agent’s “scriptability”. #e deferral of directed escape while being attacked 
also suffers from being only indirectly expressible inside the wolf-pup’s action 
system — a set of triggers that “latch” user interaction can be seen throughout 
the code. Finally, it might have been possible to unify the top-most layers of the 
wolf-pups motor system with parts of the action system in a single set of Dia-
gram channels. #e patterning of the motor programs of alphaWolf often 
reached points of extreme complexity due primarily to the navigational com-
plexity of the environment (the need to move pups towards moving targets). If 
both scheduled actions and the resulting motor programs could have “seen” each 
other, and more importantly been seen by the navigation system, issues of per-
sistence — either running actions until the pup actually arrived at a point where 
interaction could occur or eliminating attention switches made impossible by 
the current motor programs — could have been avoided.

While it remains, of course, impossible to verify these claims of the utility of the 
Diagram system for the alphaWolf installation it is equally clear that if these 
problems can arise even in a system in many respects ill-suited for their treat-
ment, it will not be long before they arose in other works. Indeed, in how long... 
and 22 we shall see ghosts of the complexities of alphaWolf appear again — 
“modal” action systems that move through constrained phases, often patterned 
by the flow of time through the work; actions, be they the drawing of lines, or 
the manipulation of existing graphic elements, that unfold over small, scripted 
periods of time; and a general blurring of the boundary between action selection 
and motor patterning. Prior to deploying Diagram in ernest in my pieces for live 
dance, however, I completed an installation that was very much about the com-
plex and “precise” patterning of time — a live composition, Loops Score.
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 5.   Loops Score — live computational music for Loops

Loops Score is the music that was made to accompany Loops. It was constructed 
by analogy with the visuals two years after Loops premiered. Just as Loops con-
structs a set of interacting processes that observe and recast the motion of 
Cunningham's hands, Loops Score takes a set of interacting musical processes 
that listen to and restate the sound and language of Cunningham's narration. 
Cunningham provided a twenty minute recording session, independent of the 
motion capture session, consisting of him reading from his 1937 diary — his 
first visit as a young man to New York. #e sonic palette for the work was 
found in a high-fidelity sample set provided by the John Cage Foundation of a 
prepared piano, prepared in accordance with Cage's instructions accompanying 
his sonatas and interludes. By selection, filtration and pitch shifting, this pre-
pared piano was turned into a set of seven pianos, each with a different, but 
radically expanded, timbal range.

Unlike Loops there is a single agent at work in the production, and, in contrast 
with !e Music Creatures this agent has no visual form and its musical output 
comes without virtual movement analogies, but simply as a set of notes sent to a 
set of virtual pianos. However, Loops Score was a work that continued many of 
the technical themes that Loops started; in particular: what it might mean to 
score one or more action systems and how one might create a work that navi-
gates alternating layered structures of emergence and control. In particular, the 
ability to general complex structures in channel / marker representations and 
then have competing tasks slice across these channels, organizing and culling 
them, is in itself the layer of open emergence and detailed specification.  

!e Music Creatures was a unique exploration of the possibilities of relation-
ships between the body of an agent, the sound that it makes and the sound that 
it understands. But as far a mainstream computer music is concerned this ap-
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figure 73. Loops Score agent overview. Each of these boxes will be 
“unpacked” in the main body of the text. 
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peal to virtual physicality was a digression. Loops Score approaches computer 
music more directly. Where !e Music Creatures have agents with complex per-
ceptual and motor skills and simple, almost script-like developmental action 
systems glued together with a few automatically learned parameters, Loops Score 
is on ground more common with the traditions of the interactive music work: 
the complexity is in the scoring, and in the interpretation of this score — spe-
cifically the “action system” of the agent. #ere is, no doubt, a future installation 
to be made that has comparable richness in each of the three parts of the agent 
decomposition, page 421, but taken together I believe that these works do a 
good job of creating a preliminary sketch of that installation’s territory. 

"e open process score

Early in the creation of this piece we rejected the, perhaps rather Cunningham-
esque, idea that the meaning of the words might be technically unrelated to the 
processes that act upon the sounds of them, opting instead to find the “process 
score” for the music out of the text itself. #e search was to find structures in 
the text that had both musical and linguistic function, that were 'half way' be-
tween forms found in music and forms bearing linguistic meaning. A number of 
forms were found, and each form was constructed as a loose template. #ey 
included lists inside the text both large and small; comparisons and spatial rela-
tionships; markings of the passage of time; returns to previous locations.

#ese templates operate on the word level, and one could perhaps imagine given 
a robust enough speech-to-text system performing this template-matching in 
real time. #is was not attempted and not required given the finite and prede-
termined narration, but remains an enticing possibility for future work. Rather, 
an analysis of the text of the narration was coupled to sound of the narration 
through marking of the onset and offset of each word in the narration. #us for 
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each present atom in each instance of each template, we can provide a time pe-
riod this atom is “listening” to the sound of the narration.

Each of these structures, gathered from the text, marks a channel-based script 
which opens windows for actions to occur. Actions inside Loops Score are trig-
gered by the presence of narration material inside these windows; in the end 
some 150 windows are marked on the score, cross-linked to sixty-five actions. 
#e vocabulary of possible actions corresponds metaphorically to the kinds of 
structures that trigger them: list-actions repeat their triggering elements while 
searching for a stable rhythm inside the elements; comparison-actions state 
their elements and then emphasize the differences between them; passage-
actions state their first element and then continue to look for material that is 
sonically related until the close of their marked passage; return-actions com-
press material from their triggering element all the way back to where they 
“came from”. #e actual programming of these musical cells is constructed using 
the manipulations of the marker / channel structure that will be described in 
the following section. #ese actions schedule the notes to be played into a 
channel which is itself exposed to the actions. Rather than “ballistically” writing 
the notes to be played to the scheduler, they opportunistically align, modify and 
perhaps even fight for space and relationships “on output”. 

Since the script is densely packed with overlapping processes, these actions 
compete using the action-selection mechanism described above. #e budget for 
actions is dynamically set based on a smoothed version of the amount of musi-
cal material that eventually makes it out of the agent — providing a long-term, 
self-regulatory production. 
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  LOOPS SCORE — EXTRACTS FROM THE TRIGGER SCORE  

!

!
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figure 74. 
An extract from the narrative-generated score for Loops Score — narrative on left (organized loosely by onset time), potential actions on the right 

with the “attention windows” that these actions listen to.
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figure 75. 
An extract from the narrative-generated score for Loops Score, continued — the score also contains increases and decreases of target output note 

density and probabilistic pauses.
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figure 76. 
An extract from the narrative-generated score for Loops Score, continued — upon ending, the score loops. However, the memory of the notes 

played is made available to the processes in the next iteration, allowing actions to trigger in advance of all of their attention windows.



#us, the agent of Loops Score exists in a perceptual world dominated by the 
sound of the narration annotated by this script. #e perception system here 
transforms the audio into a series of overlapping note events. And we find our-
selves again in a problem domain halfway between that of music and that of 
speech. #e conversion of raw unstructured audio to quantized notes is a prob-
lem that has, of course, received considerable attention — it is in essence the 
inverse problem to the forward task of synthesizing sound from a score. And, 
particularly in monophonic worlds, solving this problem is often an important 
initial step in interactive music systems. However we are in an adjacent but dif-
ferent domain here — converting speech rather than music to musical notes 
— a less grounded domain. #e coarsest version of this problem might be the 
extraction of prosodic contour and the segmentation of voiced and unvoiced 
parts of speech and this too has received some attention. Our goal then is more 
musical detail than that afforded by speech-based approaches, and less musical 
fidelity to a ground-truth with a more complex input than polyphonic music-
based approaches. 

Because of our need for musical accuracy, we forsake the simplicities of a pure-
monophonic pitch tracking-solution. We recast this perception problem as a 
tracking problem, tracking peaks on successive overlapping Fourier transform 
frames, seeding our b-tracker ongoing model population with the results of a  
lightweight monophonic pitch follower. We use the b-tracker perceptual 
framework to track these peaks and convert them into musical “notes”.

To use the b-tracker framework we need to supply the following underlying 
process details: individual tracking hypotheses are represented as individual 
frequencies F with frequency “velocities”  and amplitudes; they predict that the 
next Fourier frame will contain a strong peak at the same frequency, and a fre-

For what I believe to be the state of the art in 
this problem, A. T. Cemgil, Bayesian Music 
Transcription, PhD dissertation, Radboud 

University of Nijmegen, 2004.

One of the earliest score followers used 
unstructured audio: B. Vercoe, M. Puckette. 

Synthetic Rehearsal: Training the Synthetic Performer. 
Proceedings of the 1985 International 

Computer Music Conference. San Francisco: 
Computer Music Association, 1985.

!is pitch tracker is an implementation of the 
lightweight voice-pitch tracker: 

L. K. Saul, D. D. Lee, C. L. Isbell, Y. LeCun, Real 
time voice processing with audiovisual feedback : toward 

autonomous agents with perfect pitch, Advances in 
Neural Information Processing Systems 15. 

NIPS 2002.
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quency one Fourier bin higher F +R+Fv  and one bin lower F−R+Fv; thus 

the untrimmed branching factor of the forward search is three. Successive Fou-
rier frames are overlapped by a factor of four, to provide precise frequency in-
formation in the case that only one frequency is present in a bin. In the case that 
multiple frequencies move in and out of a bin we'd expect the kind of crossing 
hypotheses that can be disambiguated with the frequency velocity information. 
#e monophonic pitch tracker constantly seeds the tracker with hypotheses at 
its output pitch, should it determine that voiced speech is actually taking place.

Once a hypothesis has survived the culling process of the b-tracker for four suc-
cessive frames (four frames overlap a single location), it has the opportunity to 
emit a note. To do this we need to convert the pitch history of the hypothesis to 
a musical note. Since we have no underlying pitch grid from the underlying 
sonic material, we have to adapt one as we move along. We can represent this 
pitch grid as a set of hypotheses that get adapted by the pitches emitted by the 
lower level tracker.

Setting the size of the bins to be multiplicative increments of 21/12 gives us a 
adaptive chromatic scale. Choosing larger increments gives us access to poten-
tially interesting hybrid modes — modes because the scale is typically quantized 
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figure 77.#e notes created (grey) and 
filtered (red) from the b-tracker analysis of 
the short-time Fourier transform windows 

from Cunninghams’s narration.

that   cotton   club dinner     was         good            and the show was a knock-out                                      fifty,                    copper colored girls                  cab caloway                           a second   bill robinson                     and some plenty nice singing and dancing



more coarsely than a full evenly-tempered chromatic scale, hybrid because the 
locally coarse quantization grids are allowed to be globally misaligned. #is in-
crement, and the speed of adaptation / forgetting in this layer are free parame-
ters. And in a few places the score forces a flushing of this memory — a modal 
break accompanies the change of day in the narration.  #is granularity is easily 
expressed as a “cleanup” process on the ongoing model stage of this b-tracker 
implementation, page 173.

#ese hypotheses, labeled with note values, amplitudes, and ultimately with 
durations, are the “output” of the perceptual layer of the Loops Score agent. 
#ese hypotheses are injected into a short-term memory (of around five sec-
onds), which maintains the full merge histories of the hypotheses and a long 
term-memory (of around thirty minutes, twice the duration of the underling 
narration) which maintains just enough information to write a musical score.

#is resulting post-perceptual surface is thus easily presented in the channel / 
marker representation.  #is is the raw musical material that triggers and enters 
the actions of Loops Score and my discussion will now turn to how the raw algo-
rithmic material of these actions are constructed. #ese materials, although in-
troduced here in a “computer music” use are all specific only to the marker / 
channel representation and the fundamental support that Diagram offers — 
they are of music, but not musical themselves. #ey form the basis for the odd 
“musicality” of movement and interaction that I have sought in my dance pieces 
and beyond. 
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figure 78. #e diagram visualizer 
(which showed alongside Loops 

and Loops Score in a separate, 
synchronized interactive kiosk). 
#ese images are quite literally 

the markers and channels 
generating the music.



Generator stacks

#e most important is a diagram channel generator — this is an extension of 
the co-routine / resource framework introduced for !e Music Creatures, page 
140. In that work the framework was constructed to allow small imperative 
programs to run concurrently while allowing cross-program interaction and 
dependency in the shape of resources. Typically, these small programs got one 
chance to execute (or “update(...)”) per update cycle of the music creature in 
which they were embedded. Here we allow our co-routines to “return” a sequen-
tial series of diagram channel markers, and move programs forward not once 
per update cycle but until the markers that they start returning reach a certain 
point in the future. #ese programs are responsible for keeping the diagram 
channels' description of the future filled up and are called upon to generate 
more material, if they can, when they are needed.

Musical material generating processes, both simple and complex, can be written 
inside this style. For example (this time in Python; the Java is similar to the co-
routines previously discussed):

def scale(start, step):

 n=start
 while true:
  n = n + step
  yield noteMarkerFor(n, quarterNote(n))

produces an ascending chromatic scale. Parallel and series composition of proc-
esses are achieved using the same kinds of continuation-composition that the 
co-routine / resource framework already allow.

def contrary_motion():
 yield parallel( (scale(0,1), scale(100,-1) )

Clearly, we can turn channels into generators quite simply (this generator is 

t1 t2

a b

c

d

t0

generator i

i.next() a @ time t0

i.next() c @ time t1

i.next() b @ time t1

i.next() @ time t2d

channel

figure 79. Converting between channels and 
generators is easy.  Here a generator “reads out” a 

channel in order. 
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nothing more than sorted channel marker iterator), and we can turn generators 
into (potentially infinite) channels through rendering out the markers that ap-
pear from the generator until a sufficient time in the future is reached. Nothing 
prevents generators from returning markers that do not increase in time along 
the channel, although such a practice is discouraged. “Flattening” generators can 
be applied to processes that cannot produce their output in time order, with 
increasing levels of latency (i.e decreasing levels of minimum future) being in-
troduced for increasing levels of safety.

Generators and channels are complementary: generator-level composition is 
particularly good at producing memory and time-efficient processing of action-
level musical manipulation; channel-level manipulations are good at producing 
transformations that cut across many channels or many time epochs and are 
suitable for memories and intermediate buffers.

#e goal was to create from such a language framework a system that allowed 
the rapid development of incremental, real-time musical processes that contain 
as little latency as is needed to maintain their computational integrity inside a 
dynamic environment but no less — a system that blends the interactivity of 
reactive systems and the complex multi-temporal scheduling and planning of 
material that more deliberative systems achieve.

To flesh out the description of how this framework was used for Loops Score, 
we need to give some kind of overview of both generator-and channel-level ma-
nipulators from which the actions of the agent were created. Since, as pre-
miered, Loops Score used thirty-five primitive generators, eight channel manipu-
lators together to make three versions (each a generator) of each of the four sub-
linguistic templates described above, we should group these generators and ma-
nipulations together into some kind of taxonomy.
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Generator-level operations — the abstract balance

An abstract balance is a generator-level Diagram facility that takes a channel 
that is having markers added to it and filters these events such that a target 
event rate is met — it requires that something, perhaps the markers themselves, 
can provide a scalar value for a marker. We have seen something similar, but less 
dynamic, in the persistent long-term learning of !e Music Creatures, page 127. 
#e task is to find some horizontal partitioning cut-off for a channel such that 
the rate is maintained if markers that are “bigger” that this cut-off. If we have a 
sorted list of N  markers mn  in the source channel we place the cut-off cα,N  

that lets the top α fraction through at position αN  or, more accurately:

cα,N = m!αN"(1−αN + !αN")+m$αN%(αN −!αN")

In practice the distribution of marker-values isn't necessarily stationary. Han-
dling arbitrary non-stationarities is, of course, arbitrarily hard. #e following 
gives a variable forward momentum generated by recent history:

c′α,N,β = cα,N +(cα,N/2 − cα,N)β

for β > 1  this extrapolates out how the cut-off is changing with time. It's easy 

to modify this approach further to prefer more pessimistic or optimistic (or 
rather high-value or low-value) extrapolations.

#e balances can turn a channel of valued-markers, which might represent ac-
tions or perceptual events, into event streams with particular general rates. Of-
ten, it seems, it is easy to come up with a good metric for perceptual events, but 
much harder to understand how this metric transforms the underlying tempo-
ral behavior of what it applied to. Without these indirect connections, such as 
the abstract-balance, one begins to start tuning the metric itself in response to 
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the temporal dynamics of the material that it is exposed to. #at these connec-
tions should be more indirectly, yet more explicitly specified is argued strongly 
in the development of !e Music Creatures, page 159. Such a blurring of princi-
ple (the metric) and pragmatic deployment (what it happens to be used on) is a 
generally unacceptable level of coupling between two parts of a system and is 
often how a commitment to a particular input or processing of input gets buried 
deep within a system that consumes it.
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figure 80. #e abstract balance correctly 
adapts its threshold to maintain a very event 
similar rate while capturing only the highest 

value events.
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#e complete abstract balance has two more parameters — a maximum latency 
and a minimum refractory period. #e first controls the “look-ahead” window 
size and controls how far back in time the generator will be returning events. 
High latency will allow a better tracking of the target rate on highly non-
stationary input. A minimum refractory period blocks events from being gener-
ated too close together, and, further, masks these events in the memory (the 
sorted array above) such that they do not feature in the computation of the 
threshold.

Generator-level operations - filtration / perceptual partial re-tracking

Another generator-level manipulation of the musical material captured from 
the transformation of Cunningham's narration is the perceptual stream tracker. 
#is layers another level of the b-tracker framework on top of the musical ma-
terial — a much coarser level than the original partial analysis was conducted 
on — that produces a number of generator streams of material. Each b-tracker 
hypothesis is a perceptual stream — a pitch value, and a pitch momentum. Al-
though a number of attempts at musical perceptual stream segmentation are 
present in the literature, the existence of the b-tracker framework makes the 
implementation of another perceptual stream follower almost as simple as fill-

ing out a form: a hypothesis representation (pitch, pitch momentum) = (p,m) , 

a distance metric between hypothesis and pitch class datum d  |p+m−d|  , a 

hypothesis predictor p← p+m,m← αm . Now further generator-level ma-

nipulations can be performed on the lower (the lowest good hypothesis) and 
upper (the highest good hypothesis) lines of the transformed material.

figure 81. A fragment from the short term memory 
of the Loops Score agent “re-tracked” by a new b-

tracker process, segmented into three registers, 
corresponding to three b-tracker hypotheses. Note 

that no constant segmentation threshold would give 
this result. 
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Channel-level operations — the rolling culler

One simple, but ubiquitous channel-level manipulation is the rolling culler. 
#is manipulation can be put to two uses, the first is to incrementally remove 
from a channel markers that have fallen past a particular time horizon, freeing 
up the space allocated to them and allowing the channel's memory to forget 
them. #e second use for this rolling structure is to read out, according to some 
time-base the contents of the channel — like reading a score, (or playing a Fluid 
score, page 373) — by intersecting the time-base interval between updates with 
the contents of the channel. #is is, therefore, one way of turning a fully laid-
out channel into a marker generator. Rolling cullers are used to run the Dia-
gram framework into a scheduler of music (with note events as markers) or an 
organizer of movement (with pose-graph or other instructions as markers).
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figure 82. #e rolling culler is responsible for the 
past “forgetting” of markers in channels. It correctly 

handles both variable update rates and moving 
markers.
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Channel-level operations — the fusion filter

In Loops Score, Diagram markers represent actions, planned out in time, that 
when traversed by the moment, result in notes being played, or parameters be-
ing set. #e abstract balances are ways of culling sets of actions, based on crite-
ria — metrics of value — thinning them out to a particular rate. #ere are 
other ways of thinning actions, that are more important if these channels are 
going to be coupled with other channels.

As a representation of future, scheduled actions, the Diagram marker channel 
appears to notate a case where actions are independent and that, barring any 
constraints, markers can be swapped or dropped independently. What if actions 
remained atomic, but were able to form molecules inside their channels?

A Diagram fusion filter takes a perspective onto the markers in a channel and 
looks for patterns that fit templates that, once matched, cause the replacement 
of the components with a new marker or markers. If we can find a succinct way 
of specifying these channel “chemistries” then they offer a powerful way of filter-
ing or developing channel contents.

We can write production templates for perceptual phenomena:

forward masking: |t0 loud+ |t0+∆quiet→ |t0 loud

backward masking: |t0quiet+ |t0+∆loud→ |t0+∆loud

local quantization cleanup: 
∣∣t0c#

∣∣t0+∆c#→
∣∣t0+∆/2c#

On the left-hand side there is a template to be matched — certain markers with 
certain properties with a particular temporal relationship (and, in particular, 
within a certain window of time); on the right hand side are the markers pro-
duced. #is notation is not complete — it does not specify whether intervening 
markers are either ignored or prevent the match from occurring.

C# C# C#

figure 83.  #ree example fusion filters  take from 
the text.
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Programmatically we are free to construct these windowed template recognizers 
a number of ways and many recognizers are simply coded “by hand”. We shall 
see later a less general, but more compact notation for describing these tem-
plates, page 261.

#ere are other abstract production calculi that are useful to define in general. 
One models a species of marker whose action is to set a variable to a value:

redundancy deletion: 
[∣∣t0(x← a)+

∣∣t0+∆0(x← b)+ |t0+∆1(x← a)]→ |t0(x← a)

for: ∀a,b

Such filters, applied over short windows, remove transient values that are set 
and then unset from a stream.

Such techniques fall very firmly within the domain of production systems and, 
as written, their use in either AI is far from new. However, in important previ-
ous uses of production rules in AI. the goal has been to create a complete sys-
tem using this structure — essentially recasting the complete action selection 
and / or motor system problem in terms of competing or ordered production 
rule systems. In the framework here, the production system is not the material 
from which other system are constructed; rather they are available to other 
structures and representation. What is different here is the strategy not the 
tactics — the framework that this idea is embedded in and the principles that 
govern its deployment. 

reversible, live and aware of time— no production rule deletes any material, 
even if it appears to “consume” its triggering markers, these markers remain 
in the channel (annotated as “consumed”) and linked to the material that 
they produced and the production rule that coordinated it. This allows 
two important flexibilities: firstly, production rules that have fired are up-
dated live when the details of their left hand sides are updated; secondly, 

For example, the C.L. Forgy, Rete: A Fast 
Algorithm for the Many Pattern/Many Object Pattern 

Match Problem, Artificial Intelligence, 19, 1982 
continues to have new implementers today: 

http://drools.org/Rete

!e use of production systems per se in 
generative computer music is a little more 

ephemeral. 
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production rules can choose to “un-fire” and delete their right-hand side 
should their conditions for acting cease to exist. This fluidity is vital in the 
case where the contents of the two sides of the production rule vary con-
tinuously, which is the case since the marker temporal positions are con-
tinuous, unlike the typical symbolic-level AI production systems.

a domain of low computational complexity — although in general even a 
carefully ordered set of production rules can become computationally 
burdensome (and a non-ordered set can, of course, run forever) we note 
that in most cases there are a number of factors on our side: the rules are 
not being used to structure particularly deep or broad computation — 
they are for cleaning, recognizing and embellishing small amounts of in-
crementally specified material, more complex computations can be 
achieved by other means; the computation is limited by the present time 
in one direction and by a configurable time horizon on the other — there 
is little point computing things far before the present, and far in the future 
can wait. 

#e computational difficulties that remain are ameliorated by careful 
batching of the notifications that cascade out from a channel when it is 
modified. Indeed, the batching of notifications becomes vital for keeping 
the whole Diagram system working at high speed.

high availability — one or more fusion filters can be attached to any chan-
nel; however, because these filters are often used to filter executable mark-
ers they are particularly useful for channels which represent destinations 
for deferred method calls. This is of such general applicability that we add 
to the context-tree annotation library for Java a new annotation tag (that 
triggers load time byte-code injection):

@deferIntoChannel(channelDescription, parameterDescription)

this tag marks a method (which must return void) as being deferred into 
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 NOTIFICATION INSIDE THE DIAGRAM FRAMEWORK  

#e batching of notifications is one form of deferred method execution. Rather than, say, 
the addition of a marker to a channel causing the notification of every system interested 

in that channel we allow modifications to channels to be bracketed by calls to begin-

Modification() and endModification(). Only at endModification() are notifications 
propagated (calls can be safely nested). One thing that is important to get correct in this 

implementation is how structural modifications — deletions and additions — should be 
handled. Many processes that execute on modifications are much easier to code if notifi-
cations are delayed until not only the addition of a marker to a channel has taken place, 
but the marker has finished having its attributes set and its relationship with other mark-

ers configured. Batching, as written above, achieves this delay. 

However, for deletion of markers the issue is a little trickier. Again, consumers of 
notifications typically want to be informed of the impending deletion of a marker 
before the actual removal of the marker takes place, for it might have information 

stored with respect to the markers role in the channel. If these consumers only hear 
about the deletion after the marker's information has been deleted then they must be 
written to maintain a copy of all of that information. Maintaining this duplicate in-
formation, in turn, places a heavier burden on the notification mechanisms. So rather 

we make it easy to place the final removal of markers at endModification() time 

— there is a removeAtEndModification(marker). #is defers final deletion until noti-
fications have had a chance to act.

Finally, deletions need to be fused in the notification batch with any additions that 
take place to short-circuit notification cascades for markers that are added-changed-
deleted or changed-deleted in one single batch. Ironically, such fusion of method calls 
would be an ideal use of the channel based fusion filters, were those filters not being 

constructed out of the use of this very notification mechanism.



a channel. Calling this method no longer results in the method body 
being executed; rather, a marker that will execute the method body is 
created and inserted into the channel at a particular time in the future. 
channelDescription points to a class that describes how to find the channel 
in question and the channel's time-base (this is typically either from the 
context tree or from a fields in this instance). parameterDescription points 
to a class that describes how to take the parameters to this method and 
transform them into attributes on the marker — attributes that will 
presumably be read and matched by fusion filters and other channel-
level manipulations. 

Fusion filters and @deferIntoChannel are the basis for an important part of my 
tool “Fluid”. When visual elements (which can be though of as actions) are 
activated by multiple processes (which can be thought of as action-groups) we 
would like them to continue to see a stable life-cycle transition — start(), con-
tinue(), stop() and always in that order—  despite multiple processes, spread 
throughout the code-base, starting them, continuing them and stopping them 
without coordination. #e solution is to defer these start(), continue() and 
stop() calls into a channel and have a fusion filter clean up the overlapping 
messages into a diagram that expresses whether the action is in fact running or 
not.

|t0start+ |t0continue→ |t0continue

|t0stop+ |t0continue→ |t0continue

|t0start+ |t0stop→ |t0start

If some latency in stopping and starting actions is acceptable we can elide 
stops and starts that occur too closely together into unbroken “continues”:

|t0stop+ |t0+∆start→ |t0→t0+∆continue
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figure 84. By an intricate network of notifications, fusion filters are happy to collabo-
rate with changing marker inputs, changing their output positions or attributes, or 
ultimately retracting their products altogether. !e relationship is bidirectional.



#is is useful, perhaps even vital, in the visual programming case where one 
needs to construct visual programs that are robust with respect to infinitesimal 
changes of visual element positioning, page 373. Away from the visual environ-
ment this offers a neat and self-contained (with respect to where the logic is 
located) solution to the problem of non-reentrant actions having multiple par-
ent action groups. In how long... there is the weaving agent, page 351, whose “mo-
tor system” is entirely constructed out of such Diagram channels — the motor 
actions taken by the creature involve reorganizing a notation of the stage. #e 
interface between the action system and the motor system evaporates, and only 
the programming language — the method call — remains.

Loops score uses fusion filters at a number of levels. Firstly, to further clean the 
output of the perceptual abstract balances, implementing coarse perceptual mask-
ing effects (for the processes that benefit from capturing a few strong and struc-
turally important notes) and removing repeated overlapping notes from the trans-
formation and sampling of the narrative. Secondly, to propagate — and, more 
importantly — repeat-with-modification, these samples of musical material. 

Channel-level operations — modified time view

#e narration for the Loops Score is not a linear story, but rather a series of 
independent fragments, between which there are pauses of random duration.

#e first channel-level manipulation is a simple one — the temporal distortion. 
#is takes a channel and makes a view onto it that has a remapped time. With a 
bi-directional time remapping, both the view and the source channel are both 
live — markers can be added to either one and appear in the correct place in the 
other. Loops Score uses such a channel pair as its primary memory of its output-
ted musical events to compensate for these randomly generated pauses; the ma-
terial that falls in the gaps between narratives is stretched or compressed when 
written and stretched or compressed again when recalled.

time map

channel 2

channel 1

figure 85.  Two channels coupled together reflect each 
other’s contents, but present different temporal views — 

useful for the compressed memory structures of Loops Score.
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Channel-level operations — continuation momenta

In the fusion filters above I loosely wrote “production equations” such as: 

forward masking: |t0 loud+ |t0+∆quiet→ |t0 loud

We can code the recognizers (the left-hand side) and the producers (the right-
hand side) by any means. #e only constraints are that the recognizers must 
work incrementally — in response to batched notification updates from the 
channels — and producers should work non-destructively and reversibly — 
installing the request notification inside the source markers to maintain their 
relationship should their source markers change, or delete the production 
should their source markers be removed. However, for the sake of quick ex-
perimentation and tuning if nothing else, sometimes it is more conceptually 
useful to appeal to an intermediate and less general notation — particularly in 
the case of rhythmic cell generators.

So I will define a smaller set of channel listeners, which I will call channel mo-
menta. #ese classes are responsible for taking the contents of a channel and 
continuing it out a little further in time. #ey are useful for maintaining a met-
rical grid, repeating otherwise idiomatic phrases for the purposes of proto-
rhythmic structures. In how long... they are ways of injecting regularity into the 
movements of an agent (accumulation, page 329) without either choice or rigid 
duplication. In Loops Score they are responsible for continuing a motif such that 
other processes can effect the repeated gesture. #eir left-hand side is always 
bounded by a temporal horizon (the “long past”) of fixed size or number of ele-
ments and by the last element in the channel (the “now”). #is window contains 
the pattern that is to be matched by the channel momentum object.
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horizon
parser

AxaxxAxaxxAxaxx|

regular expression : (Ax?a)x?|       |\1

(Axa)xx|       |Axa

formatter

figure 86.  An example “continuation momentum” written 
using a regular expression. 



Of course, there is one pattern-matching domain where mainstream computer 
science can give us a significant head-start — so called “regular expression” 
matching. #us there is an intermediate subspecies of fusion filter that acts on 
annotated strings using an extended regular expression library. If we can pro-
duce a channel parser that takes a windowed area of a channel and transduces 
the markers and the gaps between markers into strings of annotated characters, 
then we can formulate our production rules in terms of regular expressions. 
Most regular expressions (and all regular expression engines) match portions of 
strings of characters using expression encoded in other strings. In Diagram, the 
target characters are annotated with information connecting them to the mark-
ers, or the spaces that created them. #ese annotations do not affect the match-
ing power of the regular expression, but they do follow their characters along 
for the ride. Produced markers can then be created in terms of the “captured 
groups” (strings of now annotated characters) of the template regular expres-
sions by channel formatters which have an opposite role to channel parsers, 
turning these marker-annotated characters into new markers in the future of 
the channel.

Channel-level operations — opportunistic alignment

Most of the channel manipulations described above cut across multiple times 
on the same channel. #ere is an important class of channel manipulations that 
link markers across channels, typically markers that are temporally proximate. 
Of most use in Loops Score are the alignment manipulations. #ese take the 
markers in a source channel and try to make the markers in a target channel 
line up. At first blush, this is is not too dissimilar to the object-based alignment 
of popular graphical tools (such as Adobe Illustrator or Apple Keynote ). 

 

In this work I was assisted greatly by the open 
source regular expression engine that ships with 

Java 1.5 — http://java.sun.com

 

Adobe Systems Inc — http://www.adobe.com/illustrator

Apple Computer, Inc — http:// www.apple.com/keynote
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#e fastest implementation is the most obvious: specifically, when a pair of 
source/target markers fall close together in time, we change the location of the 
target marker to align with the destination marker.

However, again, we return to the principles of the Diagram system. In particu-
lar, these alignments should be reversible and live. #e key to maintaining these 
principles is to store the the marker positions in a framework that blends multi-
ple, overlapping and persistent opinions about what a position should be. We 
have already seen one such framework — the generic radial-basis channel. Spe-
cifically, we create a class of marker that stores its position and duration in a 
generic radial-basis channel, page 136, that has a (position, duration) value rep-
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resentation. Now we can re-implement the above example. Rather than setting 
the location of the target marker to be the position of the destination marker we 
create a posting that expresses and maintains the constraint that the target 
marker should be the same as the source marker, whatever that value should be. 
Now external processes are free to move the source marker around and our 
pinned target marker will follow — therefore, we should also express the condi-
tions in which the constraint is violated and “removed” (contributing to the 
radial-basis channel with zero weight). #is makes the alignment reversible (no 
information is deleted) and live (the operation is actively maintained).

Such alignments are extensively used throughout Loops Score to manage and 
reduce the otherwise chaotic rhythmic complexity that otherwise comes from a 
number of independent musical processes taking musical material and subject-
ing them to repeated transformation. Indeed the alignment of markers before 
transmission to the virtual piano is the central source of rhythmic arbitration at 
the output “stage” of the agent. Unlike standard rhythmic quantization there is 
no global grid imposed upon the output, but a local complexity limit for the 
temporal patterning.

Four extensions make this alignment more useful and more detailed for musical 
purposes. Firstly, when aligning with extremely sparse channels one might wish 
to use a fusion filter to generate virtual markers “between” sparse markers. In 
our graphical tool metaphor this is equivalent to aligning not just to the edges of 
the page, but to the center as well. Secondly, we might choose to find the tempo-
ral distortion for un-aligned markers in terms of the nearby aligned markers. 
For the purposes of efficiency Loops Score uses a simple linear blend for un-
aligned markers that fall between their nearest aligned markers; Imagery for Jeux 
Deux uses a a radial-basis function solution after a straight line fit to couple the 
note-level channel output of a score follower to a set of video keyframes. 
#irdly, there is no reason not to make the constraint bi-directional; rather than 
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forcing the target marker to have the same onset as the source, we force both 
markers to the same, intermediate time. #is is the technique used in the output 
stage of Loops Score (where, additionally, the relative weights on the movement 
come from the amplitude of the musical event represented by the markers). 

Finally, we note that in the generic radial-basis formulation we can also encode 
additional constraints into the positions and durations of the channel — per-
haps some markers must be in the middle of others, often the ordering of mark-
ers are significant and cannot change. #is representation will see a much more 
use when we discuss the visual counterpart to the channel marker: the Fluid 
graphical system.

Concluding remarks

Loops Score is a densely overlapped work of computer music that, like Loops, 
moves between areas of shocking clarity — piano mimicking the sound of 
Cunningham’s voice — and periods that are propelled and sustained by its own 
obscured but palpable logic. Like !e Music Creatures, the piece with its general 
strategy of capture and repetition-with-modification, produces clearly percepti-
ble intentional development, a deeply rhythmic movement with no stable pulse 
or tonal center. More than !e Music Creatures, it is an oddly self-balancing yet 
unbalanced music, culling the variety of the over-prepared prepared pianos and 
often offering slow and audible development of material.

Technically Loops Score set out to be an exploration of the recently created Dia-
gram framework in a setting closer to traditional computer music than !e Mu-
sic Creatures. #at it offered a thorough “work-out” of the technology at the low-
est level is undeniable — the architecture survives the instantiation and destruc-
tion of tens of thousands of actions and perhaps millions of notes without in-
tervention. #e re-coupling of the strategies afforded by this work and a more 
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visual, perhaps a more “agent-like”, set of concerns occurs in the new dance 
pieces, in particular the work for how long... 

I believe that in this virtual choreographic domain the emphasis, borrowed from 
my musical concerns, on the complex patterning of time and the authorship of 
rich, open forms in time provides a fresh perspective on the creation of live 
time-based media. #e Diagram framework successfully hybridizing the reac-
tive, or “interactionist”, tendencies of shared by both the agent and mapping per-
spectives with the more ponderous and typically off-line strategies of non-real 
time and perhaps even non-algorithmic music.

We should step back and return briefly to the axial decomposition of action-
selection techniques discussed earlier, page 73, so see where the diagram frame-
work fits in. Clearly, the Diagram framework core action-selection algorithm 
pushes the c43/c5m action strategy into allowing multiple simultaneous ac-
tions. However, as a supporting framework, Diagram also reduces the burden of 
responsibility on the core selection technique — no longer is it responsible for 
all of the high level temporal patterning of an agents actions. No longer is action 
selection the final structuring step (with the details to be filled in by a motor 
system) in the creating of temporal structures. Rather it is the first step, with 
the results of action selection to be further crafted by collaborating processes. 
By allowing post-hoc manipulations of future, scheduled actions and interac-
tions, multiple processes that cut across the results of action selection can both 
clean up and constrain them. #is acts to reduce the “temporal uncertainty” 
faced by the author of an agent, while at the same time offering hybrid strate-
gies, orthogonal to action selection, that allow for more complex patterning of 
action.

In standing back and surveying Loops Score, the Diagram framework and the 
smaller “glue systems” that this chapter has developed, we see that this “complex 
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patterning of action” — what I might call the choreography of the digital agent’s 
actions  — is in fact the goal of this family of techniques. 

#e context-tree permits the kind of modularity that defuses one of the central 
methodological contradictions of making art with a complex process —  how 
choices act upon a process that is simultaneously being developed, how the 
names of parameters, styles, behaviors, states, movements retain power over the 
complex processes without fusing solid the agent’s inner workings (and with 
them our creative process) prematurely. #rough decoupling elements, through 
code injection, and through carefully made persistence frameworks, we have 
complex processes that can support long-term collaborative practices. I am 
tempted to call this the complex patterning of collaboration.

Is this choreographic? #e Diagram framework, in its explicit articulation of 
action selection and scheduling, makes a computational representation, in the 
sense of the introductory chapter — a site for further, agglomerative, transfor-
mation, for the collision of processes and constraints. It is these structures that 
allow for the small, nimble agents of my work in dance theater.

#ese “language interventions”, the multiple uses of the context tree, the agents 
made up of changing parts, the explicit patterning of action in the diagram 
framework, all are motivated by the need to author and contain intricate proc-
esses. One cloud remains, however — how to take the techniques developed in 
this chapter and cast them in such a way that they can truly be deployed “live”, as 
it were, in a collaborative creative process. #is thesis’s answer to this will be 
given in the last chapter, on Fluid, the graphical environment that responds to 
this problem.
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