
This section develops two techniques that have a wide applica-
bility to a range of problems that agents face when trying to un-
derstand complex worlds. These techniques find a crucial place 
at the core of the perception systems of many of the agents dis-
cussed in this thesis — Loops Score, how long...? and 22.

Chapter 5 — !e b-tracker framework & distance mapping

In the previously discussed decomposition of the agent — into “perception”, “ac-
tion” and “motor” systems — the perception system holds the privileged place as 
the point of entry of the external world into the agent. As we take the agent 
metaphor, or just an agent toolkit into new arenas — choreography, music, vis-
ual art — unsurprisingly, the perception systems of our agents require signifi-
cant attention. 

For the perceptual worlds inhabited by the agents are broad ranging: the agents 
in this thesis perceive the details and the gross aspects of human movement 
(motion-capture data), of human musical performance (data from an instru-
mented piano), of human speech (material from a narration) and of the sound 
of music itself (from live microphones in a gallery). One test of the agent meta-
phor is to organize these disparate domains without trying to unify them. In-
deed in this chapter and those that follow we will see that agent metaphor offers 
the ability to construct a small set of principles and technologies that span this 
range — allowing, perhaps even provoking, new relationships between com-
puter, movement, space and sound. 

It is in this section that I articulate two such organizing perceptual frameworks 
— these are the “open forms” of the agent perception system, that help organize, 
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or indeed provoke, these relationships. It is also in this section that we can for-
mulate most sharply the analysis and critique of the methodologies and results 
of the traditional digital artist’s “mappings”.  

 1.   !e perception system

Often the perception system of a c43/c5 toolkit based creature follows a tree 
structure. #e percepts at each node in this tree possess the ability to extract 
information from the rawest providers of sense information to the creature. 
#is is a hierarchical decomposition of the state of the world, as sensed by the 
agent, into a set of categories, or at the very least, carefully treated responses to 
it. 

#roughout this thesis there have been agents that have grown their percept 
trees to dynamically extend and tune the way that they decompose the world. In 
!e Music Creatures' exchange agent, sub-models of the “sound” percept are dy-
namically added in response to hearing segmented audio in the gallery; in net-
work these sub-models carry transition information that is used to create the 
body of the creature; in tile there is a population of rhythm models, not sonic 
models. Loops, for the matter of a little simplicity and computational efficiency 
amongst its numerous creatures has a fixed number of percepts looking for the 
“unexpected” in the colony’s signaling environment. Finally, it is by dynamically 
monitoring and populating sub-levels of this hierarchical structure that Dobie is 
able to construct new states in the world from which to explore new (state,ac-
tion) pairings, as described previously, page 61.

#is hierarchical structure works well for these creatures and for a number of 
others, particularly in simple virtual worlds. But that this is a hierarchical de-
composition of the state of the world needs to be made clear: a positive response 
from the “sound” percept of Dobie, the interactive, trainable dog indicates the 

Root

Sound Self-movementLocation
Color

learned

figure 42. A c5 agent “percept tree” classifies and extracts information from the 
perceptual world.
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presence of sound of the environment; a positive response from the “black” per-
cept of a wolf pup in alphaWolf indicates the presence of a another black pup in 
its field of vision; yet the co-activation of “sound” and “black” does not indicate 
the presence of a single “howling-black-wolf-object”. Simply that there is howl-
ing and there is blackness somewhere. 

#us, we might say that “objects” in the world, should they exist at any level of 
description in the virtual environment, are broken up upon entry to the c43/c5 
perception system. And that any perceptual fusion that occurs is up to the agent 
to perform.

#is is only the first half of the perceptual fusion problem. Having completed 
this there exists, in some c5-based creatures, parallel perception trees that take 
fused packages of percept-tree response and constructs higher level recognizers 
that have categories for such things as “howling-black-wol f”. However, even 
with these second order trees, there is a need to fuse the information from these 
perceived objects with objects previously perceived. And this tracking of objects 
is the other half of the perceptual fusion problem.

One can construct agents and interactive worlds that do not require any solu-
tion to any tracking or fusion problem: Dobie, for example, cared about a reward 
marker and the position of the interactor’s avatar in the world, but cared not for 
any representation of their common origin; alphaWolf could in most cases, like 
many agent to agent perception problems, simply “cheat” and remember to 
package up all of the perceptions that came from the same particular agent to-
gether, and having done so, no ambiguity remained; the creatures of Loops never 
needed an object model, rather they sensed the average of all the creatures’ ef-
fects on the surrounding signaling-fluid. 

 164



#ere are three possible reasons for not “cheating” or at least constructing an 
agent tool-kit such that cheating is not mandatory. #e first is computational 
efficiency — complex perception for the 42 creatures of Loops was, at the time , 
out of the question. #e second is what one might call perceptual honesty — 
that by demanding that our agent synthesize its own object-level models rather 
than obtaining them directly from the world, the mistakes that the creature 
makes concerning objects will be believable and, ultimately support an assigna-
tion, by an observer, of the agent of consistent knowledge and intentions.  #ere 
is a substantial pay-off in realism and behavior for what might seem like sub-
stantial unnecessary busy-work.

#e third reason for this decision is that when one makes the connection be-
tween the virtual agent and the real world more porous, there are simply no ob-
ject models to be found and the agent must synthesize its own. #is is the prob-
lem we face in interactions less structured than in Dobie and alphaWolf and, 
indeed, in domains closer to sensing the real world directly such as robotics. 
Our agents, when they enter the context of dance theater, must synthesize and 
maintain models of moving dancers; when they enter a gallery they must con-
struct and monitor models of sonic material; and when they listen to the per-
formance of music they must create and track the location of the performance 
in the “world” of the score themselves. #ese things are simply not directly avail-
able from the “sensors” that we known how to make.

#us in agent worlds that are more strongly coupled to our worlds, tracking and 
fusion problems are much less avoidable, since we seldom get an opportunity to 
control — as we wander as artists from domain to domain — both the sensing 
and the subject being sensed. 

#erefore throughout this work a broad range of algorithms are located in 
places that act as “perception systems” for the rest of the interactive artwork — 

Compelling evidence for this payoff is presented in D. Isla, 
!e Virtual Hippocampus: Spatial Common Sense for Synthetic 

Creatures S.M. "esis,  MIT. 2001. 
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in particular those that build and sustain a set of “object” hypotheses. I shall use 
as examples in this thesis: score followers — that match live musical perform-
ance to a pre-arranged score; choreographic trackers — that match live move-
ment to open or closed versions of previous rehearsals; rhythm finders — that 
look for repeated gestures and form more complex ideas of the speed of a ges-
ture; movement trackers — that rework synthesized movement into new se-
quences; speech recognizers — that identify snippets of sound as similar or 
different to previously important sounds.

 2.   !e b-tracker “design pattern” 

If the perception system is where the uncontrollable organization of the world 
repeatedly meets the internal author-able organization of the agent, a tracking 
problem occurs when the agent needs to form perceptual structures that exist 
longer than a single perceptual snapshot, where new information needs to be 
matched and incorporated into older structures, when ongoing structures be-
come repositories for learnt information, and when old structures require main-
tenance and extrapolation. Problems in this task range widely: short term, clas-
sic object persistence problems — is this object the same object that I saw some 
moments ago (from Dobie) ?; medium term support for ongoing actions — I 
have drawn a line from this object to this place, where now is this object (from 
how long...?) ?; long term memory problems — is this previously encountered 
dominant towards me (from alphaWolf) ?, is this sound like a previous sound 
(from !e Music Creatures) ?  
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To develop a general, unifying, reusable framework for solving these tracking 
problems we decompose the issue into three main stages that take place over 
two pools of data (we'll see cases where more complicated structures are built 
up by layering trackers constructed in this fashion). #e data pools are the in-
coming elements and the ongoing models and the stages are incoming element 
fusion, incoming->ongoing prediction / match / update, and ongoing cleanup. 
We’ll first develop each stage of the framework before specifying these stages 
precisely.

figure 43. A hypothetical example consists of object tracking in a multi-object 
world. “Incoming elements” in this case are various continuous or categorized 
perceptions that are presumable located in the world.
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figure 44. #ese can be fused together on the basis that perceptions that come 
from the same location come from the same object.

figure 45. Previously the agent has encountered a number of objects, we need to 
match these older objects with the new, fused sense data. 
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figure 46. In many cases it makes for a more robust perception system to match 
these new sense data with predictions of what these older objects should be now. 
#is prediction process might change the apparent contents of the older-
objects, or it may form and add new hypothesized descendants and nominate 
these as new ongoing models.  

figure 47. In either case, once the new data 
has been matched with some of the older 
object-models, this new data is merged with 
the older object models. In particular, the 
agent's confidence in on object model will 
change, and the agent's confidence in the very 
existence of this ongoing object will change. 
Match algorithms vary in the deployment of 
the b-tracker framework — the two most 
commonly used are a greedy merge up until a 
certain threshold and a Hungarian assign-
ment solver, page 291. We’ll see a selection of 
simple algorithms below.
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figure 48. Confidence in the existence of some objects might be so low that they 
are culled, stable confusion in the value of some data inside an object may result 
in ongoing model fission or two ongoing object models might be seen to be 
really the same object and fused.

Finally, we note that top-down influences may be exerted on the contents of 
this perceptual structure by injecting particular elements into the incoming set, 
or more interestingly, speculatively injecting objects into the ongoing model set 
(and waiting to see if any data “sticks” and increases the confidence associated 
with this model). In the above, diagrammed example, a creature might hypothe-
size the existence of an object in the world (perhaps food) with an unknown 
location. #is ongoing model can be used as a placeholder object for action. 

Of course this is all extremely general, but it's worth listing the data-structures 
and algorithms that need to be added to this framework, to provide a kind of 
template that we can fill in when we come to deploy this framework. To make 
concrete these stages, I'll sketch the structures and algorithms needed to con-
struct four of the example uses of this framework that were deployed in art-
works discussed in this thesis. 
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#ey are: a Hough tracker — given some movement (here, of dancers in how 
long...?, and the source video of Imagery for Jeux Deux) it tries to hypothesize 
and maintain straight lines that explain the movement or images, named after 
the Hough transform in image processing that finds straight lines in an image; 
score follower — given live performance data (notes played in Jeux Deux) this 
tracker works out where on a known musical score we currently are; marker 
tracker — given noisy, unlabeled, untracked motion-capture data tries to com-
pute marker assignments, and smooth positions and velocities for these points 
while ignoring transient ghost markers; dancer tracker — given good marker 
data tries to cluster these locations into isolated areas and thus, without match-
ing skeletons or using any other kinematic knowledge, tries to find clusters of 
points that are likely dancers. 

#ese problems are of roughly increasing complexity: the Hough transform is 
relatively solved problem, although I am unaware of any interest in solving it 
incrementally; many have written score followers, a fundamental if dangerous 
building block of interactive computer music for at least decade, and around for 
two, but our implementation gives us a few novel uses; in tracking markers it 
transpires that it is more important to have a solution based in this perceptual 
framework than it is to have a more accurate but proprietary black box solution; 
similarly with the dancer tracker, for a number of reasons we can exploit access 
to the specifics of this solution stratagem during the imagery for how long...?

Firstly, the data structures: 

incoming element: has some, perhaps fragmentary, labeled piece of data 
associated with it. In a Hough tracker example this will be a short line seg-
ment, in a score follower example this will be a time-stamped note, in a 
marker tracker example this will be the position of a marker of unknown 
origin, in a dancer tracker this will a set of tracked marker positions.

!e Hough Transform — P.V.C. Hough, Machine 
Analysis of Bubble Chamber Pictures, International 

Conference on High Energy Accelerators and 
Instrumentation, CERN, 1959.

"e seminal score following work: B. Vercoe, M. 
Puckette. Synthetic Rehearsal: Training the Synthetic 

Performer. Proceedings of the 1985 International 
Computer Music Conference. San Francisco: 

Computer Music Association, 1985.

Imagery for Jeux Duex was made to accompiany  
composer Tod Machover’s concerto for 

“hyperpiano” : 
T. Machover,  Jeux Duex for Hyperpiano and 

Orchestra, Musical Score, Boosey & Hawkes, New 
York. 2005.

"e marker and dancer trackers are further 
discussed on page 286. A less direct tracker is 

found on page 348.
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ongoing model: has space for a complete object model, together with 
enough element history, use history and merge history to participate in 
this agent. score follower — hypothesized score position and tempo; 
marker tracker — Kalman filter model of marker position, velocity and 
acceleration; dancer tracker —  k-means-based clusterer of marker posi-
tions. 

And at each stage there are algorithms that might be provided:

incoming element fusion: spots that some elements should be pieced to-
gether into intermediate packages of data in order to make the matching 
easier. Hough tracker — successive line elements that are too short to be 
reliable are pieced together into longer elements with a more definite di-
rection; score follower — no fusion takes place; marker tracker — markers 
that are too close together are merged; dancer tracker — no fusion takes 
place.

ongoing model prediction: prepares the outgoing models for matching by 
speculatively, and reversibly, updating them with the current “time”. Hough 
tracker — no prediction; score follower —  predicts where we would be in 
the score right now if we continued at the hypothesized tempo; marker 
tracker — the kalman filter prediction cycle; dancer tracker — the k-means 
update cycle on the most recent data.

incoming → ongoing match: matches the incoming elements and element 

packages with the ongoing models often using a distance metric between 
elements and models. Hough tracker — nearest neighbor search using a 
line-segment to line-segment distance; score follower — all incoming data 
“matches” all models, every hypothesized score position and tempo has to 
explain the incoming notes; marker tracker — an implementation of the 
“Hungarian algorithm” linear programming method produces unique par-
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ings between markers and predicted marker positions, some markers will 
be new, some ongoing models will be unmatched; dancer tracker — all 
incoming data “matches” all models, all markers have to be explained by 
each hypothesized dancer configuration.  

incoming → ongoing merge: having made a match (or made no match) the 

ongoing model needs to be updated. Often a global confidence score is 
associated with a model. Hough tracker — a line segment model is rotated 
and translated toward the new line segment data; score follower — each 
matched model builds some good hypotheses as to what note in the score 
that incoming note corresponds to, and what that does to the current 
tempo; marker tracker — marker positions are added to the ongoing kal-
man filter as an observation stage; dancer tracker —  potential k-means 
cluster fission and fusion are evaluated in the light of the new data; fitting 
scores are calculated.

ongoing model cleanup: culls, fuses, fissions and injects ongoing models into 
the pool. Hough tracker — poorly scoring models are dropped, good scor-
ing models duplicated as the number of hypotheses are kept near a par-
ticular target number; score follower — poor hypotheses are dropped, 
nearly identical hypotheses are merged, good hypotheses that have multi-
ple explanations of the most recent data split; marker tracker — poorly 
performing, lost markers are dropped; dancer tracker — poor models are 
dropped, good models that wish to offer versions of themselves with 
greater or fewer active clusters (dancers) do so.

top-down influences: That systems typically post-perception can offer top-
down influences on the perception system is also of considerable interest, 
particularly in a space where an agent might commit to acting upon a 
model: in a hough-tracker — we might need to maintain lines that have 
been drawn or are being drawn or are the lattice for an ongoing move-
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ment; in a score follower — we might have alternative means for guessing 
the current position, during rehearsal or performance; in a marker- or 
dancer-tracker the agent again may already have started to act upon a 
marker and require that such a position is maintained and updated.

In its chameleon-like configurations the b-tracker framework relates to other 
work that has been used in the fields that border on that of making agents' per-
ception systems. Maintaining a population of likely hypotheses (ongoing mod-
els) as one scans some data piece by piece (incoming elements) is very similar to 
a beam-search, a general purpose heuristic search technique used, for example, 
in planners. A beam search is a different (a more general, but often less com-
plete) but related way of solving problems typically solved by dynamic pro-
gramming.

And much has been written about dynamic programming as a framework for 
understanding, or at least building, musical perception, for example the work of 
David Temperly and Roger Dannenberg. But a careful reading of this work will 
show that once the initial excitement surrounding the dynamic programming 
trick — the spectacular apparent efficiency of dynamic programming over com-
plete search, converting exponential time algorithms into polynomial time — it 
becomes increasingly hard to formulate perceptual frameworks inside the limits 
of the dynamic programing per se. Indeed, as Temperly is forced to add optimi-
zations in his monograph on the use of dynamic programming in music and to 
look to fusing dynamic programming processes together, it looks more and 
more like heuristic search.

R. Dannenberg, Dynamic Programming for Interactive Music Systems, in Readings in 
Music and Artificial Intelligence, E. R. Miranda, (ed.), Contemporary Music 

Studies series, Vol. 20, Harwood Academic Publishers, 2000.

D. Temperly, !e Cognition of Basic Musical Structures, MIT Press, 2001.
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figure 49. In a score follower the ongoing model is a pair (score posi-
tion, tempo). "e b-tracker population of models attempt to predict 

the next notes and compete to explain the data as it arrives in a live 
setting.
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Of course, the most important example of dynamic programming is arguably be 
the Viterbi “search” of hidden Markov models. Indeed, we'll see a gesture recogni-
tion task posed in the b-tracker framework, page 296. A population of simple 
predicting trackers that explain incoming data looks a lot like the condensation 
framework used in computer-vision tracking problems. Further afield, the top-
down injection of ongoing models reminds one of symbolic AI's frame structure 
— when actions want to hypothesize the existence, perhaps of an hidden object, 
they might instantiate an ongoing model that will act as both a repository for 
information, should this object become, visible and as a token for other actions to 
use (for example to provoke and guide search behavior) based on the uncertainty 
of various “slots” in that “frame”.

It is not then that the b-tracker framework necessarily opens up previously in-

Especially in the case of the marker tracker there is a clear a relationship 
between the b-tracker as described here with the Conditional Density 

Propagation algorithms first described in: 

M. Isard and A. Blake, Condensation — conditional density propagation for visual 
tracking. International Journal Computer Vision, 29, 1, 1998

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum 
decoding algorithm. IEEE Transactions on Information "eory 13(2):260–267, 

April 1967. 

With application to hidden Markov models, L. R. Rabiner. A tutorial on hidden 
Markov models and selected applications in speech recognition. Proceedings of the 

IEEE 77(2):257–286, February 1989.

Frames: M. Minsky, A Framework for Representing Knowledge. MIT AI Lab, Memo 
360, June 1974.
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figure 50. In Imagery for Jeux Deux video of piano key depresses was integrated into the piece’s network of points and lines by annotating the video with straight lines. "ese 
lines, identified by a Hough transform on each video frame were then tracked using the b-tracker framework. "is yields lines that follow follow the underlying animation 

of the key press and can be connected to other material in the work.



tractable problem domains — in terms of analysis — but rather that is is a sin-
gle core framework for thinking about, and implementing, many kinds of things 
that intelligent systems end up needing to do. #e motivation for and the suc-
cess of this framework comes from two places: firstly that its broad applicability 
will allow a great many agent perception systems to be quickly and robustly 
considered and assembled, exploiting a common set of code and visualization 
tools; secondly, that as a way of allowing an agent to see the world it is not only 
an open or “white” box but better — it offers the right kind of openness and the 
right sort of partial inner structure for other systems to communicate with, on 
the level not just of “output” or “results” but of inner dynamics as well.

It is worth pausing to reflect upon the openness of this structure compared to 
other approaches — since the b-tracker framework offers a concrete way to talk 
about some perception problems, its i worth taking stock and comparing this 
framework to other “perceptual frameworks” used in digital art. While some 
incredibly well-written analysis might offer a single “answer”, a single “perception” 
of, say, our current position in a musical score, or the position of a dancer on a 
stage, the b-tracker offers a small, trackable population of scored hypotheses 
with histories and uncertainties. Which would we rather work with as artists?

I suggest that tracking problems occur in exactly the places where a mapping 
approach would fail to gain traction. In lieu of the perfect answer — the exact 
score position, the precise dynamics of the stage, a stock function-like transfor-
mation offers to flatten the information present in the perceptual world into a 
single quantity, which in turn allows subsequent simple transformation. It 
makes no difference if this quantity is of high dimension or a single number, the 
function-like core of mapping and transformation promotes a constant data di-
mension. 

Tracking problems occur in places where simple averages may capture nothing, 
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figure 51.  "e b-tracker framework allows a robust score follower to 
be quickly created from reusable parts. "e above diagram shows a 

tracking of score position using a synthetic performance of Tod Ma-
chover’s Jeux Deux that has been artificially corrupted with 10% of the 
notes played wrongly.  Despite the noise the tempo is clearly constant 

and accurate. "e lower diagram shows a snapshot from a rehearsal 
— where at one point a few measures of music are repeated. 



where what is being perceived is intrinsically multi-modal (in a statistical, rather 
than media sense). #e average score position when there is uncertainty over 
whether a performer is repeating a section of music is worse than most other 
guesses one could make; the average position of a dancer when there is uncer-
tainty over whether there is one or two dancers can be arbitrarily poor. A mo-
tion capture marker-mean-position might be so noisy as to be useless (consider 
the case where a dancer lingers on the edge of the motion capture volume), and 
might be arbitrarily far away from the dancers (consider the case of two, oppos-
ing, lingering dancers). When confronted with such “noise” mapping tool-kits 
offer to bury these measurements in increasing levels of filtration. But if there is 
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figure 52. Imagery for Jeux Deux couples two b-trackers together to syn-
chronize animation (derived from video footage of a rehearsal) to a live 
performance. First, the note data (MIDI) of the rehearsal is converted 
to a score-time (in quarter notes) using a score follower. "is relation-

ship can be inverted to provide a video time-code and playback rate per 
quarter note of the music. "en the score is tracker live. As the live b-

tracker follows the score, animation material from the rehearsal tracks 
each score hypothesis, fading in and out with the ongoing model confi-

dences.



insufficient information present in this signal to start with, if the perceptual 
world of the autonomous artwork is already aliased so severely, to look for the 
solution by eliminating even more information from this signal seems perverse, 
page 288.

In some cases an agent can work with these potential hypotheses without flat-
tening them in any way: in Imagery for Jeux Deux, multiple video streams syn-
chronized with individual score-tracking hypotheses fade in and out with the 
confidences of these models — the resulting perception is of a continuously 
synchronized visual performance, that waxes and wanes with the certainty of 
the tracking, which in turn is affected, on a different level, by the very clarity of 
the music at the point. Even simpler, lines drawn to moving points on the stage 
of how long...? commit the b-tracker to maintaining an active hypothesis for the 
end marker while the line exists, allowing the linear form to unfold gesturally, 
rather than appearing in a single frame.

In other cases, of course, an agent has to pick one hypothesis and stay with it. 
What constitutes a good decision-making technique? — an action selection 
strategy. We have already seen that such algorithms are judged by their rele-
vance (they pick good models), their coherence (they stay with these models 
long enough and no longer). 

By using an action-selection framework, our agents can then become extremely 
conservative concerning the deletion of information. And this aspect of this 
work — and it really is an aspect of the agent approach that we are building 
here — is reflected directly in the artwork. It is the difference between being 
able to stably form a dancer-like cluster of points, maintaining a top-down in-
fluence over that cluster and performing a visual operation on their position 
— one that is coherent over seconds or minutes — versus being able to “visual-
ize” the mean of all the markers on the stage. #e former is tentative but specific, 

Of course, this flavor of explicit representation — our 
population of hypotheses about the world — appears 

to go against the spirit at least of the early agent-
based research in the field.  However, we can avoid 

some of the dissonance with our historical narrative 
by realizing that the actions that our agents make are 
not dictated by or dedicated towards maintaining this 

model of the world, nor is this model a singular and 
totalizing end in itself.
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possibly fleeting, but a particular segmentation of the perceptual world; the lat-
ter is an affirmative, constant, broad averaging over the whole environment. #e 
former meets the world on its own terms; the latter slices the world in a prede-
fined manner regardless of the specifics of what it happens to slice. 

#e b-tracker framework offers a fundamentally different authorial position on 
the perceptual world occupied by an interactive artwork. Constant dimensional, 
pre-arranged slices of a perceptual world that do not segment the perceptual 
world are of limited use in complex worlds; in fact this might be the very hall-
mark of complexity itself. By using, instead, these techniques, our agents are 
more open to the interactive possibilities of those complexities.

 3.   !e distance mapping algorithm

#is is not to say that the action selection begins and ends the use of perceptual 
information —the properties of the thing perceived of course leak (or perhaps 
are even mapped) into the action that demonstrates that the perception has 
occurred (move toward an object; reconfigure toward a new musical measure, 
begin breaking down a “scene” of the choreography over there, manipulate the 
temporal flow of a graphical “score” based on this moment occurring now). But 
an agent framework allows the complexity, the multi- and variable dimensional-
ity of the world, into the agents that exist inside it. 

#is said, we have seen problems and solutions to problems within this agent 
perspective that have the flavor of mapping to them — the long-term learning 
database of !e Music Creatures, page 127, learns simple scalings from one do-
main to another; the motor learning of music creatures makes small self-
organizing maps in order to understand the effects of its own motor control. Of 
course these are “small numbers” inside large systems — rather than large sys-
tems made up of small numbers. But what makes these different from the ex-
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cruciatingly hand-made signal manipulations of classical mapping is the tech-
nologies that surround these magic numbers and transformations — technolo-
gies that allow these numbers to be indirectly and automatically set by a more 
“human” description or process of what those numbers ought to be.

Our simple, often one-dimensional self-organizing maps can learn a scaling 
from one domain into a particular, fixed range, while removing some of the 
static statistical features of the input domain, decoupling the consumer of this 
signal from some of the specifics of the producer. #is technique, as much as it is 
useful, does not care about the temporal qualities of the signal. It does nothing 
with the temporal statistics of the signal (indeed, the first step in the learning 
algorithm for these maps is to randomize the order of and often down-sample 
the input signal) and it gives no interesting control over how the the output dis-
tribution changes. Perhaps, and especially as we move towards sharing a time 
and space with live dance, there is a role for indirectly specified maps that do 
propagate some temporal information.

As work for how long...? and 22 progressed, it became increasingly apparent that 
we needed to build our own layered structure of perceptions of the movements 
of the dancers, stacking primitive upon primitive perhaps with parameters that 
could be quickly learned or reconfigured, rather than approaching the problem 
armed solely with a detailed foreknowledge of the choreography — foreknowl-
edge that was impossible to obtain given the choreographic work schedule of 
how long...? and with the working practices and improvisatory nature of 22. 
Early on, as we began to sharpen the marker- and dancer-trackers, we began to 
look at other simple measures that we could derive from of, a set of markers 
moving in space that would be robust to both noise and choreographic deci-
sions. #e ultimate payoff for this work comes with a description of the works 
themselves, but the approach is so general as to merit a separate discussion here.

 180



In 22 there are several properties of the imagery that become, at times, con-
nected to motion on the stage — the obvious way to do this is to couple speed 
(of dancer) to speed (of playback of video, of movement of infinite lines). In how 
long...? there was a perceptible and yet ungraspable, unlocatable, vanishing 
rhythm to the movement that stood in defiance of the frame-rate and resolution 
of the motion-capture cameras. Immediately clear was that speed as “distance 
divided by time”, as one would write it in high school, captured little of the mo-
tion of modern dance;with its dizzying curves and recursive foldings back on 
itself, this rhythm in Brown’s motion simply was not to be found in such trivial 
coarse velocities.  

Consider the problem, then, of automatically mapping the movement of a 
dancer to the movement of the virtual animation. Specifically, mapping the 
movement of a motion-capture marker-set to the movement through a particu-
lar, pre-made animation. We would like to specify as little foreknowledge to this 
“motion-scrubbing” problem as possible — because everything might be differ-
ent in the next rehearsal or performance — and yet relate the complex temporal 
qualities of the dancer to the complex temporal qualities of the pre-made ani-
mation.
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A simpler sub-problem is the mapping of a marker set animation to the “move-
ment” of a single number. More precisely, can we find the motion of a single 
scalar quantity that most succinctly captures the qualities of that marker-set 
movement? #is problem leads to the classic definition of multi-dimensional 
scaling problem, which is in this case equivalent to computing the principle com-
ponent or leading eigenvector of the self-distance matrix. All multi-dimensional 
scaling techniques seek to find low dimensional spaces to embed high dimen-
sional data-points such that distance relationships between the points are re-
tained in the lower dimensional space. We could treat such an embedding algo-
rithm as a black box, simply reading the literature and implementing one of the 
well known versions of the technique. However, a reinterpretation of the prin-
ciple component analysis that underlies this technique will provide us with an 
algorithmic formulation that is more efficient for our purposes and much more 
flexible.

Our approach here is to take the input signal (the marker movement) It  and a 

distance-metric (that gives a distance from any particular configuration of 
markers to any other) d(It0 , It1)   over a range of time t = a . . .b  sampled by N  

samples. #is distance metric is the foreknowledge that we add.

We can then compute the N×Nmatrix of distances DI . #e goal is to transfer 

this distance matrix over to a single output scalar quantity that is also defined 

over the interval t = a . . .b  and also sampled by N samples. We do this by it-

eratively making the N×N  matrix of self-distances for the output signal DO  

increasingly like that of DI . For scalars, where the distance metric is simply 
‖x− y‖ the iteration is:

for each element Ot ; t = a . . .b , 

For a brief overview of multi-
dimensional scaling: J. B. 

Kruskal, and M. Wish. Multi-
dimensional Scaling. Sage Publi-

cations. Beverly Hills. CA. 
1977
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Ot ← Ot +α ∑
q"=t

[
(Ot −Oq) ·

(
DI

qt/DO
qt −1)

)]

By starting with a motion signal that shows some variation (even if it is simply 
some noise added to the signal) and repeatedly applying the above equation to 
each element of the signal N for some small αwe will decrease the difference 

between DI and DO .

#e above formulation of the problem is equivalent to an algorithm known as 
the power-method of finding the largest eigenvector of a matrix. For non-
degenerate starting signal, it is extremely likely to converge and converges with a 
rate proportional to αλ1/λ2 — the ratio of the first two eigenvalues of the dis-

tance matrix. 

However, our almost pictorial interpretation given here seems to offer opportu-
nities for special control that the text-book leading-eigenvector formulation 
does not possess:

Firstly, we might want to find a constrained solution where a few particular
On  are fixed, or are less able to move — this is an opportunity for “top-

down” control over the answer, perhaps the agent has already committed 
its body to some part of the solution and thus this part of our re-scaling 
cannot change.

Secondly it's easy to see how to iteratively update this system when a new 
piece of data arrives — turning an iterative algorithm into an incremental 
one — we simply need to pick a single new output scalar that minimizes:

ON+1 ← argmin
y ∑

n=1...N

∣∣|y−On|−DI
n,N+1

∣∣

For a description of the power-method, 
and its convergence properties:  

G H. Golub and C F. Van Loan, Matrix 
computations, second edition, "e Johns 

Hopkins University Press, 1989.

also G. H. Golub, P. Comon, Tracking a few 
extreme singular values and vectors in signal 

processing Proceedings of the IEEE 
Volume 78,  Issue 8,  Aug., 1990.

A related, more principled, but less 
general iterative work is: T. Morita, T. 

Kanade, A Sequential Factorization Method 
for Recovering Shape and Motion from Image 

Streams. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 19 

(8), 1997.
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Since ON  is a good starting guess for ON+1 , this is an O(N)  operation 

rather than O(N2)  and also allows us to shape the preference for output 

distribution.   

We can go further than this and, introducing a little latency in the out-
put mapping, update not just one but the last few recent output samples, 
increasing the stiffness of this update as we go further back in time. #is 
might reflect an increasing commitment to older values, perhaps because 
some other system has acted upon them.

Thirdly, and perhaps most interestingly, we can redefine the above picture in 
more abstract terms and operate on non-scalar output spaces. We define 

an operation blendedDistanceNorm( Oa , Ob , d, α) that takes  two elements 

of O  — Oa  and Ob  and returns a version of Ob , O′
b  such that the dis-

tance between O′
b  and Oa  is α closer to d . Of course, for such a general 

function we can say much less about the global convergence properties of 
this algorithm, but if this function always does what it claims to do, and 
never goes backwards, we know that we will always converge to a solution, 
if not the optimal solution. Finding optimality, in the face of many local 
solutions, is within the purview of the b-tracker framework which will 
meet this representation shortly.

We are now in a position to define a class of automatic, iterative, temporally 
aware mapping algorithms that are defined in indirect terms: specifically an in-
put distance metric, and output distance metric and an output blend function. 
In certain cases where the input space has a particular topology we can auto-
matically generate an input distance metric using the self-organizing map tech-
niques previously described; otherwise there usually remains as a degree of 
freedom to pick a scaling between the distances of one space and the other. 
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figure 53. 
"e distance mapping algorithm can be 

executed iteratively. Here, the solution to 
the problem given on the next page, figure 

55, is slowly developed over time.

t



square rests for while 
on left hand side of the 
image, slowly spinning 

upward

another bounce on the 
top of the screen

slowly returns to the 
exact same spot as the 

starting frame

slowly begins to spin
bounces sharply on 

bottom of screen

slows down as it gets to 
the right hand side

one-dimensional target
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source video animation
frame 0-49

source video continued
frame 50-99

  DISTANCE MAPPING EXAMPLE — UNSTRUCTURED VIDEO 

  

complex video sequence

simple, scalar sequence
distance m

apping

figure 54. "e distance map-
ping algorithm takes one 
matrix of distances (here 

formed from a complex video 
sequence) and tries to the 

distance matrix of some other 
signal, in some other mathe-

matical space, look just like it, 
by modifying that signal.

figure 55. Automatically mapping the video sequence of a rotating, bouncing square to a scalar or 
a 2-vector captures many of the aspects of the source video — the general symmetry, the slight 
asymmetry, the pause in the middle, the “rebound” upon the bounce. Further distance mapping 
analysis of the residual distance matrix yields a noisy, but informative, oscillatory signal that 

corresponds to the wavelength of the square’s rotation.
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We also note in passing that we have seen other representations that can satisfy 
these criteria — pose-graph motor systems have distance metrics, and if needs 
be we can compute a constrained blendedDistanceNorm() function by allowing 
movement along graph edges; generic radial-basis channels' value representation 
can be used to formulate a blendedDistanceNorm() function if supplied with a 
distance-metric (the exact same interface is required for the competitive basis 
channels, page 153). 

!e motion-scrubbing solution

#us we can formulate a solution to the motion-scrubbing problem with almost 
no tuning on our part. We need: a distance metric for motion capture marker 
data — for the case of tracked data, page 286 this is a trivial sum of squared 
distances, for untracked, data we use the Hausdorff distance metric; a distance 
metric on the output space — the sum of squared vertex-position differences 
for the vertex animation data suffices; and a blendedDistanceNorm() function — 
we use an iterative algorithm that searches forwards or backwards in time along 
the fixed animation, is generic to any interpolatable time series (including the 
pose-graph representations) that already has a distance metric. In this case the 
inter-frame distances of the animation that the output distance calculation uses 
can be pre-computed and the whole iterative system runs in real time with a 
negligible computation burden; the core iteration is easily accelerated by mod-
ern vector processing techniques.

Unlike the simple approach of mapping the speed (as in distance divided by 
time) of dance to the speed (as in frames per second) of video this approach has 
the following advantages: 

it allows backward motion by the performer to change the direction of  

For a formal definition of the Hausdorff 
distance: E. W. Weisstein. Hausdorff 

Measure. From MathWorld—A Wolfram 
Web Resource. 

http://mathworld.wolfram.com/HausdorffMeasure.html
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movement of the video and similarly repetitive movement by the dancer 
repeats segments of video all the way out to the duration of the time-series 
windows. No amount of filtering a measured “dancer speed” could ever 
achieve the same effect for the information is simply not present in the 
instantaneous velocity of the dancer, but in the relationship to the body 
now with the body long past;

it is less sensitive to noise on the input signal than a first derivative calcula-
tion would, be while adding no additional latency;

it is bidirectional — the distance metric of the target representation also 
factors into how quickly we move through it. Rather than just playing out 
at a variable rate, should the video do something like “reverse” direction, 
our motion-scrubbing performer will have a much harder time keeping 
the video moving forward.

Mapping the moving of the dancer to the movement of the fiducial, “infinite” 
lines that mark the scrim in 22 is accomplished in a similar way — only here the 
distance-mapping algorithm is located inside a generic radial-basis channel and 
its output is blended with the influences of nearby geometry on those lines and 
the line's own momentum. It is useful to use the distance-mapping algorithm 
within such a process; in fact we can fade the distance mapping layer in and out 
depending on how good a job it finds itself doing at matching the output dis-
tance matrix with the input. #is allows not just a mapping to occur, but the 
system to seize correspondences as the opportunity arises.

Finally, we can use incremental mappings into low=dimensional spaces as an 
input to higher level perceptual primitives. In particular we can open up the 
workings of the distance mapping algorithm to the view of b-tracker hypotheses 
that track a range of output signal trajectories, scoring them on how well their 
distance matrices correspond to the target input, creating new hypotheses by 
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perturbing the output signal — helping the system as a whole out of local min-
ima caused by degeneracies of the output space. Alternatively, we can track indi-
vidual extrema as the move through low-dimensional output signals on the ba-
sis that the input signals correspond to at least transiently interesting “poses”. 
We shall see an example of these very algorithms in the memory score agent of 
how long...?, page 348.

Concluding remarks

In summarizing the distance mapping approach we might try to find a little 
space between it and more conventional slices through perceptual worlds. Al-
though the distance “mapping” algorithm began as a direct approach to the 
mapping problem, with a goal of finding new ways of explicitly yet indirectly 
specifying mappings, in this formulation information is compressed into low di-
mensional signals but not necessarily deleted. 

Indeed, we might note, in searching for a definition that separates the “analyti-
cal” of mapping from the analytical of more broadly used computer scientific 
representations is this compression. If we think of the analytical representations 
that have truly widespread use in synthetic arenas — for example, in computer 
music we have the short-time Fourier transform, linear predictive coding, the 
wavelet transform, or even just the radial-basis functions and neural networks 
of some of the more advanced mapping techniques — each of these representa-
tions began or were quickly adapted for the use of signal compression and re-
construction. Multi-dimensional scaling, related as it is to adaptive vector quan-
tization and self-organizing maps, also shares this compression-aspect. And it is 
this, not any comparative complexity, that indicates a separation between such 
techniques and the simple averages and global measurements that visual, inter-
active artists have typically tended to gravitate toward.

#is is, of course, a wide cross-
section through computer music, 

for an introduction to most of 
these techniques as they apply to 

computer music, C. Roads, !e 
Computer Music Tutorial. MIT 

Press, 1996.

For wavelets: G. Evangelista, 
Flexible Wavelets for Music Signal 
Processing. Journal of New Music 

Research, 30 (1). 2001.
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Taken together —   the broad, generic and adaptable b-tracker framework and 
the very specific, analytic distance-mapping technique have a number of features 
of critical importance to the working artist. #ey are general purpose: and thus 
lasting, and worth investing tools and visualizations on; they are generic: armed 
with these techniques I can build and test algorithms using simple data-sets, 
perhaps scalars, before exposing agents to the complexities, of, say modern 
dance; and they are open — they offer structure for thinking about perceptual 
problems and a variety of detail levels for interaction. #ese are the two ap-
proaches that allow my agents to enter into a whole variety of perceptual worlds, 
quickly and adaptively.
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